Distillation boundaries originate from saddle azeotropes, dividing the composition space into distillation regions. In heterogeneous mixtures distilled in packed columns, distillation regions overlap. The common area of distillation regions is parametrically sensitive, and it determines the possibilities of crossing (at a finite reflux) the distillation boundaries defined for a total reflux or reboil ratio. This work is an extended research of the paper (Królikowski et al., 2011) conducted to scrutinize whether the distillation regions overlapped in heteroazeotropic systems distilled in staged columns. Presented studies were performed by finding such composition points of the products, for which the rectifying profiles of staged columns were ended in different distillation regions. Calculations were executed for the heterogeneous mixture classified under Serafimov's topological class as 3.1-2: ethanol - benzene - water. Distillation regions for staged columns were found to overlap each other in the heterogeneous systems. As a result, their common part was parametrically sensitive.
The article concerns fly ashes generated from the combustion of hard coal and deposited on landfills. Investigation results describing fly ash taken from a combustion waste landfill are presented in the article. The investigation results indicate a possibility for combusting the coal reclaimed by separation from the fly ash and utilizing the remaining fly ash fractions.
Tests for combustion of hay and sunflower husk pellets mixed with wood pellets were performed in a horizontal-feed as well as under-feed (retort) wood pellet furnace installed in boilers with a nominal heat output of 15 and 20 kW, located in a heat station. During the combustion a slagging phenomenon was observed in the furnaces. In order to lower the temperature in the furnace, fuel feeding rate was reduced with unaltered air stream rate. The higher the proportion of wood pellets in the mixture the lower carbon monoxide concentration. The following results of carbon monoxide concentration (in mg/m3 presented for 10% O2 content in flue gas) for different furnaces and fuel mixtures (proportion in wt%) were obtained: horizontal-feed furnace supplied with hay/wood: 0/100 - 326; 30/70 - 157; 50/50 - 301; 100/0 - 3300; horizontal-feed furnace supplied with sunflower husk/wood: 50/50 - 1062; 67/33 - 1721; 100/0 - 3775; under-feed (retort) furnace supplied with hay/wood: 0/100 - 90; 15/85 - 157; 30/70 - 135; 50/50 - 5179; under-feed furnace supplied with sunflower husk/wood: 67/33 - 2498; 100/0 - 3128. Boiler heat output and heat efficiency was low: 7 to 13 kW and about 55%, respectively, for the boiler with horizontal-feed furnace and 9 to 14 kW and 64%, respectively, for the boiler with under-feed furnace.
The objective of this study is to investigate the change in partition coefficient with a change in the concentration of the solute in a liquid system consisting of two relatively immiscible solvents. To investigate the changes in the partition coefficients, the data of the partition coefficients at infinite dilution and the ternary Liquid-Liquid Equilibrium (LLE) data at finite concentrations of the solute should be consistent. In this study, 29 ternary systems that are found in literature and for which the partition coefficients at infinite dilution and the ternary LLE data cannot be predicted accurately by the universal quasi-chemical (UNIQUAC) model are identified. On the basis of this model, some consistent and inconsistent ternary systems are introduced. Three inconsistent systems, namely hexane-butanol-water, CCl4 (carbon tetrachloride)-PA (propanoic acid)-water, and hexane-PA-water, are chosen for detailed analysis in this study. The UNIQUAC activity coefficient model is used to represent these data over a range of concentrations. The results show large errors, exhibiting the inability of this model to correlate the data. Furthermore, some ternary systems in which cross behavior of solutes between two phases observed are identified.
The article describes the testing of four selected samples of limestone originating from four commercially exploited deposits. The tests of sorbents included a physicochemical analysis and calcination in different atmospheres. The main aim of the tests was to determine the possibilities for using limestone during combustion in oxygen-enriched atmospheres. Tests in a synthetic flue gas composition make it possible to assess the possibility of CaCO3 decomposition in atmospheres with an increased CO2 concentration.
This paper presents an analysis of the corrosion hazard in the burner belt area of waterwalls in pulverised fuel (PF) boilers that results from low-NOx combustion. Temperature distributions along the waterwall tubes in subcritical (denoted as SUB) and supercritical (SUP) boilers were calculated and compared. Two hypothetical distributions of CO concentrations were assumed in the near-wall layer of the flue gas in the boiler furnace, and the kinetics of the waterwall corrosion were analysed as a function of the local temperature of the tubes. The predicted rate of corrosion of the boiler furnace waterwalls in the supercritical boilers was compared with that of in the subcritical boilers.
The motion of submicron particles involves the deterministic terms resulting from the aerodynamic convection and/or electrostatic attraction, and the stochastic term from the thermal displacement of particles. The Langevin equation describes such behavior. The Brownian dynamics algorithm was used for integration of the Langevin equation for the calculation of the single fiber deposition efficiency. Additionally the deterministic and stochastic of the particle motion were derived, using the Lagrangian and Eulerian approaches of particle movement and balance, for the calculation of the single fiber deposition efficiency due to both mechanisms separately. Combination of the obtained results allows us for calculation of the coupling effect of inertia and interception with the Brownian diffusion in a form of correlation. The results of calculation show that the omitting of the coupling effect of particular mechanism and using the simple additive rule for determination of the single fiber deposition efficiency introduces significant error, especially for particles with diameter below 300 nm.
This paper presents a method of describing an airlift bioreactor, in which biodegradation of a carbonaceous substrate described by single-substrate kinetics takes place. Eight mathematical models based on the assumption of liquid plug flow and axial dispersion flow through the riser and the downcomer in the reactor were proposed. Additionally, the impact of degassing zone with assumed complete mixing on the obtained results was analyzed. Calculations were performed for two representative hydrodynamic regimes of reactor operation, i.e. with the presence of gas bubbles only within the riser and for complete gas circulation. The conclusions related to the apparatus design and process performance under sufficient aeration of the reaction mixture were drawn on the basis of the obtained results.
Editor-in-Chief
Andrzej K. Biń, Warsaw University of Technology, Poland
Editorial Board
Andrzej Burghardt (Chairman), Polish Academy of Sciences, Gliwice, Poland
Jerzy Bałdyga, Warsaw University of Technology, Poland
Andrzej Górak, T.U. Dortmund, Germany
Leon Gradoń, Warsaw University of Technology, Poland
Andrzej Jarzębski, Silesian University of Technology, Poland
Zdzisław Jaworski, West Pomeranian University of Technology, Szczecin, Poland
Władysław Kamiński, Technical University of Łódź, Poland
Stefan Kowalski, Poznań University of Technology, Poland
Andrzej Krasławski, Lappeenranta University of Technology, Finland
Stanisław Ledakowicz, Technical University of Łódź, Poland
Eugeniusz Molga, Warsaw University of Technology, Poland
Alvin W. Nienow, University of Birmingham, United Kingdom
Andrzej Noworyta, Wrocław University of Technology, Poland
Ryszard Pohorecki, Warsaw University of Technology, Poland
Andrzej Stankiewicz, Delft University of Technology, The Netherlands
Czesław Strumiłło, Technical University of Łódź, Poland
Stanisław Sieniutycz, Warsaw University of Technology, Poland
Krzysztof Warmuziński, Polish Academy of Sciences, Gliwice, Poland
Laurence R. Weatherley, University of Kansas, Lawrence, United States
Günter Wozny, T.U. Berlin, Germany
Ireneusz Zbiciński, Technical University of Łódź, Poland
Technical Editor
Barbara Zakrzewska, West Pomeranian University of Technology, Szczecin, Poland
Language Editor
Marek Stelmaszczyk, West Pomeranian University of Technology, Szczecin, Poland
All manuscripts submitted for publication in Chemical and Process Engineering must comprise a description of original research that has neither been published nor submitted for publication elsewhere.
The content, aim and scope of the proposals should comply with the main subject of the journal, i.e. they should deal with mathematical modelling and/or experimental investigations on momentum, heat and mass transfer, unit processes and operations, integrated processes, biochemical engineering, statics and kinetics of chemical reactions. The experiments and modelling may cover different scales and processes ranging from the molecular phenomena up to production systems. The journal language is grammatically correct British English.
Chemical and Process Engineering publishes: i) full text research articles, ii) invited reviews, iii) letters to the editor and iv) short communications, aiming at important new results and/or applications. Each of the publication form is peer-reviewed by at least two independent referees.
Submission of materials for publication
The manuscripts are submitted for publication via e-mail address andrzej.bin@outlook.com. When writing the manuscript, authors should preferably use the template for articles.
Proposals of a paper should be uploaded using the Internet site of the journal and should contain:
In the following paragraphthe general guidelines for the manuscript preparation are presented.
Manuscript outline
Figures: drawings, diagrams and photographs should be in gray scale. In case of coloured graphs or photo an additional payment of 300 PLN (72 €) per 1 page containing coloured figures on both sides, or 150 PLN (36 €) per page containing coloured figures on one side will be required.
Tables should be made according to the format shown in the template.
The method of quoting literature source in the manuscript depends on the number of its authors:
In the case of citing more sources in one bracket, they should be listed in alphabetical order using semicolon for separation, e.g. (Bird et al., 1960; Charpentier and McKenna, 2004; Marquardt, 1996). Should more citations of the same author(s) and year appear in the manuscript then letters “a, b, c, ...” should be successively applied after the publication year.
Bibliographic data of the quoted literature should be arranged at the end of the manuscript text in alphabetic order of surnames of the first author. It is obligatory to indicate the DOI number of those literature items, which have the numbers already assigned. Journal titles should be specified by typingtheir right abbreviationsor, in case of doubts, according to the List of Title Word Abbreviations available at http://www.issn.org/2-22661-LTWA-online.php.
Examples of citation for:
Articles
Charpentier J. C., McKenna T. F.,
2004.Managing complex systems: some trends for the future of chemical
and process engineering. Chem. Eng. Sci., 59, 1617-1640. DOI: 10.1016/j.ces.2004.01.044.
Information from books (we suggest adding the page
numbers where the quoted information can be found)
Bird R. B.,
Stewart W.E., Lightfood E.N., 2002. Transport Phenomena. 2nd edition,
Wiley, New York, 415-421.
Chapters in books
Hanjalić K., Jakirlić S., 2002.
Second-moment turbulence closure modelling, In: Launder B.E., Sandham
N.D. (Eds.), Closure strategies for turbulent and transitional flows.
Cambridge University Press, Cambridge, 47-101.
Conferences
ten Cate A., Bermingham S.K., Derksen
J.J., Kramer H.M.J., 2000. Compartmental modeling of an 1100L DTB
crystallizer based on Large Eddy flow simulation. 10th European
Conference on Mixing. Delft, the Netherlands, 2-5 July 2000, 255-264.
8. Payments
Starting from 2014 a principle of publishing articles against payment is introduced, assuming non-profit making editorial office. According to the principle authors or institutions employing them, will have to cover the expenses amounting to 40 PLN (or 10 €) per printed page. The above amount will be used to supplement the limited financial means received from the Polish Academy of Sciences for the editorial and publishing; and in particular to increase the capacity of the next CPE volumes and to proofread the linguistic correctness of the articles. The method of payment will be indicated in an invoice sent to the authors or institutions after acceptance of their manuscripts to be published. In justifiable cases presented in writing, the editorial staff may decide to relieve authors from basic payment, either partially or fully. All correspondence should be sent to Editor-in-Chief, Prof. Andrzej K. Biń, email address: andrzej.bin@outlook.com.