Applied sciences

Archives of Foundry Engineering

Content

Archives of Foundry Engineering | 2014 | No 1

Download PDF Download RIS Download Bibtex

Abstract

While analyzing shape accuracy of ferroalloy precision castings in terms of ceramic moulds physical anisotropy, low-alloy steel castings

("cover") and cast iron ("plate") were included. The basic parameters in addition to the product linear shape accuracy are flatness

deviations, especially due to the expanded flat surface which is cast plate. For mentioned castings surface micro-geometry analysis was

also carried, favoring surface load capacity tp50 for Rmax = 50%.

Surface load capacity tp50 obtained for the cast cover was compared with machined product, and casting plate surface was compared with

wear part of the conveyor belt. The results were referred to anisotropy of ceramic moulds physical properties, which was evaluated by

studying ceramic moulds samples in computer tomography equipment Metrotom 800.

Go to article

Authors and Affiliations

R. Biernacki
R. Haratym
J. Tomasik
J. Kwapisz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of measurements of liquid metal fluidity and linear shrinkage of nickel alloy IN-713C in vacuum induction

melting furnace Balzers VSG-2. Because of limited volume of the furnace chamber special models for technological trials were designed

and constructed to fit in the mould of dimensions 170x95x100mm. Two different designs of test models were proposed: horizontal round

rods and modified spiral. Preliminary studies were carried out for alloys Al-Si. Horizontal round rods test was useful for evaluation of

fluidity of hypoeutectic silumin, however in case of nickel superalloy the mould cavity was completely filled in each test because of high

required pouring temperature. Positive results were obtained from the modified spiral test for all alloys used in the research. Relationship

between the linear shrinkage for the test rod and a specific indicator of contraction defined on a spiral was observed.

Go to article

Authors and Affiliations

M. Cieśla
R. Findziński
P. Gradoń
F. Binczyk
Download PDF Download RIS Download Bibtex

Abstract

The results of some mechanical properties of four Mg-5Al-xRE-0.4Mn (x = 1 – 5) alloys are presented. The microstructure of

experimental alloys consisted of an α-Mg phase and an α+γ semi-divorced eutectic, Al11RE3 phase and an Al10RE2Mn7 intermetallic

compound. For gravity casting in metal mould alloys, Brinell hardness, impact strength, tensile and compression properties at ambient

temperature were determined. The performed mechanical tests allowed the author to determine the proportional influence of the mass

fraction of rare earth elements in the alloys on their tensile strength, yield strength, compression strength and Brinell hardness. The

impact strength of the alloys slightly decreases with a rise in the rare earth elements mass fraction.

Go to article

Authors and Affiliations

K.N. Braszczyńska-Malik
Download PDF Download RIS Download Bibtex

Abstract

The examined material comprised two grades of corrosion-resistant cast steel, namely GX2CrNiMoN25-6-3 and GX2CrNiMoCuN25-6-3-

3, used for example in elements of systems of wet flue gas desulphurisation in power industry. The operating conditions in media heated

up to 70°C and containing Cl- and SO4 ions and solid particles produce high erosive and corrosive wear.The work proposes an application

of the σ phase as a component of precipitation strengthening mechanism in order to increase the functional properties of the material.

The paper presents the results of examination of the kinetics of σ phase precipitation at a temperature of 800°C and at times ranging from

30 to 180 minutes. Changes in the morphology of precipitates of the σ phase were determined using the value of shape factor R.

Resistance to erosion-corrosion wear of duplex cast steel was correlated with the kinetics of sigma phase precipitating.

Go to article

Authors and Affiliations

A. Brodziak-Hyska
Z. Stradomski
C. Kolan
Download PDF Download RIS Download Bibtex

Abstract

This article contains information concerning of the analysis the possibility of defining refinery qualities of the slag based thermo-physical

and thermo-dynamical data. It was showed the brass refining with the many-carbide reagents introduced in to the slag. The paper presents

the results of the structure analysis of the brass after carbide slag refining in the industrial conditions. The results of the macrostructure

analysis have confirmed the argument on high reducing effectiveness of manganese and aluminium carbide used during CuZn39Pb2 alloy

melting. The X-Ray microanalysis of the ingot cross-section has shown considerable discrepancies in the disposition of the inclusions.

This effects showed on the great influence of reduction melting condition in to the brass melting

Go to article

Authors and Affiliations

A.W. Bydałek
A. Bydałek
Download PDF Download RIS Download Bibtex

Abstract

The effects of filling the core box cavity and sand compaction in processes of core production by blowing methods (blowing, shooting)

depend on several main factors. The most important are: geometrical parameters of cavity and complexity of its shape, number,

distribution and shape of blowing holes feeding sands as well as the venting of a technological cavity. Values of individual parameters are

selected according to various criteria, but mostly they should be adjusted to properties of the applied core sand.

Various methods developed by several researchers, including the authors own attempts, allow to assess core sands properties on the basis

of special technological tests projecting the process into a laboratory scale. The developed criteria defining a degree or a filling ability

factor provide a better possibility of assessing the core sand behavior during flowing and core box filling, which indicate the value and

structure of the obtained compacting decisive – after hardening – for strength and permeability. The mentioned above aspects are analyzed

– on the basis of authors’ own examinations - in the hereby paper.

Go to article

Authors and Affiliations

R. Dańko
J. Dańko
M. Skrzyński
A. Burbelko
Download PDF Download RIS Download Bibtex

Abstract

An initial assessment of the effectiveness of cast iron inoculation, performed by the method of impulse introducing the master alloy into

cast iron, is presented. The experiment was concerned with the hypoeutectic gray cast iron inoculated with either the Alinoc or the Barinoc

master alloy by means of an experimental device for pneumatic transportation. Examinations involved pneumatic injection of the

powdered inoculant carried in a stream of gaseous medium (argon) into the metal bath held in the crucible of an induction furnace. It was

found that the examined process is characterised by both high effectiveness and stability.

Go to article

Authors and Affiliations

M.S. Soiński
A. Derda-Ślęzak
Download PDF Download RIS Download Bibtex

Abstract

A significant part of the knowledge used in the production processes is represented with natural language. Yet, the use of that knowledge

in computer-assisted decision-making requires the application of appropriate formal and development tools. An interesting possibility is

created by the use of an ontology that is understandable both for humans and for the computer. This paper presents a proposal for

structuring the information about the foundry processes, based on the definition of ontology adapted to the physical structure of the

ongoing technological operations that make up the process of producing castings.

Go to article

Authors and Affiliations

Z. Górny
D. Wilk-Kołodziejczyk
A. Smolarek-Grzyb
Download PDF Download RIS Download Bibtex

Abstract

The results of investigations of moulding sands with an inorganic binder called GEOPOL, developed by the SAND TEAM Company are

presented in the paper. Hardeners of various hardening rates are used for moulding sands with this binder. The main aim of investigations

was determination of the influence of the hardening rate of moulding sands with the GEOPOL binder on technological properties of these

sands (bending strength, tensile strength, permeability and grindability). In addition, the final strength of moulding sands of the selected

compositions was determined by two methods: by splitting strength and shear strength measurements. No essential influence of the

hardening rate on such parameters as: permeability, grindability and final strength was found. However, the sand in which the slowest

hardener (SA 72) were used, after 1 hour of holding, had the tensile and bending strength practically zero. Thus, the time needed for taking

to pieces the mould made of such moulding sand will be 1.5 - 2 hours.

Go to article

Authors and Affiliations

M. Holtzer
A. Bobrowski
D. Drożyński
W. Plaza
Download PDF Download RIS Download Bibtex

Abstract

The presented in the paper investigations were aimed at the determination of the reclaimed material (obtained in the dry mechanical

reclamation process) addition influence on properties of moulding sands with hydrated sodium silicate modified by colloidal suspension

of zinc oxide nanoparticles in propanol. Nanoparticles originated from the thermal decomposition of alkaline zinc carbonate, were used.

The results of the reclamation of the spent moulding sand with hydrated sodium silicate performed in the AT-2 testing reclaimer are

presented in the paper. Both, spent sands from the Floster S technology and from the technology with the modified water-glass were

subjected to the reclamation processes. The following determinations of the reclaimed material were performed: pH reaction, acid demand,

ignition loss and Na2O content. The obtained reclaim was used as a matrix component of moulding sands with water-glass in the Floster S

technology, in which it constituted 60% and 50% of the sand matrix. The strength properties of the prepared moulding sands were

determined (bending strength Rg

u

, tensile strength Rm

u

) after samples storing times: 1h, 2h, 4h and 24 hours.

Go to article

Authors and Affiliations

J. Kamińska
A. Kmita
Download PDF Download RIS Download Bibtex

Abstract

The article presents an analysis of the applicability of the Replicast CS process as an alternative to the investment casting process,

considered in terms of the dimensional accuracy of castings. Ceramic shell moulds were based on the Ekosil binder and a wide range of

ceramic materials, such as crystalline quartz, fused silica, aluminosilicates and zirconium silicate. The linear dimensions were measured

with a Zeiss UMC 550 machine that allowed reducing to minimum the measurement uncertainty.

Go to article

Authors and Affiliations

A. Karwiński
R. Biernacki
A. Soroczyński
R. Haratym
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of studies of high-alloyed white cast iron modified with lanthanum, titanium, and aluminium-strontium. The

samples were taken from four melts of high-vanadium cast iron with constant carbon and vanadium content and near-eutectic

microstructure into which the tested inoculants were introduced in an amount of 1 wt% respective of the charge weight. The study

included a metallographic examinations, mechanical testing, as well as hardness and impact resistance measurements taken on the obtained

alloys. Studies have shown that different additives affect both the microstructure and mechanical properties of high-vanadium cast iron.

Go to article

Authors and Affiliations

M. Kawalec
Download PDF Download RIS Download Bibtex

Abstract

Ductile iron casts with a higher silicone content were produced. The austempering process of high silicone ductile iron involving different

austempering times was studied and the results presented. The results of metallographical observations and tensile strength tests were

offered. The obtained results point to the fact that the silicone content which is considered as acceptable in the literature may in fact be

exceeded. The issue is viewed as requiring further research.

Go to article

Authors and Affiliations

A. Kochański
A. Krzyńska
T. Radziszewski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the method of preparing a composite slurry composed of AlSi11 alloy matrix and 10 vol.% of SiC particles, as well as

the method of its high-pressure die casting and the measurement results concerning the tensile strength, the yield point, the elongation and

hardness of the obtained composite. Composite castings were produced at various values of the piston velocity in the second stage of

injection, diverse intensification pressure values, and various injection gate width values. There were found the regression equations

describing the change of mechanical properties of the examined composite as a function of pressure die casting process parameters. The

conclusion gives the analysis and the interpretation of the obtained results.

Go to article

Authors and Affiliations

Z. Konopka
A. Pasieka
Download PDF Download RIS Download Bibtex

Abstract

The resistance of cast iron to abrasive wear depends on the metal abrasive hardness ratio. For example, hardness of the structural

constituents of the cast iron metal matrix is lower than the hardness of ordinary silica sand. Also cementite, the basic component of

unalloyed white cast iron, has hardness lower than the hardness of silica. Some resistance to the abrasive effect of the aforementioned

silica sand can provide the chromium white cast iron containing in its structure a large amount of (Cr, Fe)7C3 carbides characterised by

hardness higher than the hardness of the silica sand in question. In the present study, it has been anticipated that the white cast iron

structure will be changed by changing the type of metal matrix and the type of carbides present in this matrix, which will greatly expand

the application area of castings under the harsh operating conditions of abrasive wear. Moreover, the study compares the results of

abrasive wear resistance tests performed on the examined types of cast iron. Tests of abrasive wear resistance were carried out on a Miller

machine. Samples of standard dimensions were exposed to abrasion in a double to-and-fro movement, sliding against the bottom of

a trough filled with an aqueous abrasive mixture containing SiC + distilled water. The obtained results of changes in the sample weight

were approximated with a power curve and shown further in the study.

Go to article

Authors and Affiliations

D. Kopyciński
M. Kawalec
S. Piasny
A. Madizhanova
Download PDF Download RIS Download Bibtex

Abstract

Studies were conducted on a zinc coating produced on the surface of ductile iron grade EN-GJS-500-7 to determine the eutectic grain

effect. For this purpose, castings with a wall thickness of 5 to 30 mm were made and the resulting structure was examined. To obtain a

homogeneous metal matrix, samples were subjected to a ferritising annealing treatment. To enlarge the reaction surface, the top layer was

removed from casting by machining. Then hot dip galvanising treatment was performed at 450°C to capture the kinetics of growth of the

zinc coating (in the period from 60 to 600 seconds). Analysing the test results it was found that within the same time of hot dip

galvanising, the differences in the resulting zinc coating thickness on samples taken from castings with different wall cross-sections were

small but could, particularly for shorter times of treatment, reduce the continuity of the alloyed layer of the zinc coating.

Go to article

Authors and Affiliations

D. Kopyciński
E. Guzik
A. Szczęsny
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of comparative tests of the fatigue properties conducted on two non-ferrous alloys designated as Al 6082 and

Al 7075 which, due to the satisfactory functional characteristics, are widely used as engineering materials. The fatigue tests were carried

out using a proprietary, modified low cycle test (MLCF). Particular attention was paid to the fatigue strength exponent b and fatigue

ductility exponent c. Based on the tests carried out, the results comprised within the range defined by the literature were obtained. These

results prove a satisfactory sensitivity of the method applied, its efficiency, the possibility of conducting tests in a fully economical way

and above all the reliability of the obtained results of the measurements. Thus, the thesis has been justified that the modified low cycle

fatigue test (MLCF) can be recommended as a tool used in the development of alloy characteristics within the range of low-cycle variable

loads

Go to article

Authors and Affiliations

M. Maj
K. Pietrzak
Download PDF Download RIS Download Bibtex

Abstract

Directional solidification technique is an important research instrument to study solidification of metals and alloys. In the paper the model

[6,7,8] of directional solidification in special Artemis-3 facility was presented. The current work aimed to propose the ease and efficient

way in calibrating the facility. The introduced M coefficient allowed effective calibration and implementation of defined thermal

conditions. The specimens of AlSi alloys with Fe-rich intermetallics and especially deleterious β-Al5FeSi were processed by controlled

solidification velocity, temperature gradient and cooling rate.

Go to article

Authors and Affiliations

P. Mikołajczak
L. Ratke
Download PDF Download RIS Download Bibtex

Abstract

Drops of molten cast iron were placed on moulding sand substrates. The composition of the forming gaseous atmosphere was examined. It

was found that as a result of the cast iron contact with water vapour released from the sand, a significant amount of hydrogen was evolved.

In all the examined moulding sands, including sands without carbon, a large amount of CO was formed. The source of carbon monoxide

was carbon present in cast iron. In the case of bentonite moulding sand with seacoal and sand bonded with furan resin, in the composition

of the gases, the trace amounts of hydrocarbons, i.e. benzene, toluene, styrene and naphthalene (BTX), appeared. As the formed studies

indicate much higher content of BTX at lower temperature it was concluded that the hydrocarbons are unstable in contact with molten

iron

Go to article

Authors and Affiliations

J. Mocek
Download PDF Download RIS Download Bibtex

Abstract

Flake graphite cast iron was hot-dip coated with pure aluminium or aluminium alloys (AlSi11 and AlTi5). The study aimed at determining

the influence of bath composition on the thickness, microstructure and phase composition of the coatings. The analysis was conducted by

means of an optical microscope and a scanning electron microscope with an EDS spectrometer. It was found that the overall thickness of a

coating was greatly dependent on the chemical composition of a bath. The coatings consisted of an outer layer and an inner intermetallic

layer, the latter with two zones and dispersed graphite. In all the cases considered, the zone in the inner intermetallic layer adjacent to the

cast iron substrate contained the Al5Fe2 phase with small amount of silicon; the interface between this phase and the cast iron substrate

differed substantially, depending on the bath composition. In the coatings produced by hot-dipping in pure aluminium the zone adjacent to

the outer layer had a composition similar to that produced from an AlTi5 bath, the Al3Fe phase was identified in this zone. The Al3Fe also

contained silicon but its amount was lower than that in the Al5Fe2. In the coatings produced by hot-dipping in AlSi11, the zone adjacent to

the outer layer contained the Al3FeSi phase. The analysis results showed that when AlSi11 alloy was applied, the growth mode of the inner

layer changed from inwards to outwards. The interface between the Al5Fe2 phase and the cast iron substrate was flat and the zone of this

phase was very thin. Locally, there were deep penetrations of the Al5FeSi phase into the outer layer, and the interface between this phase

and the outer layer was irregular. Immersion in an AlTi5 bath caused that the inner intermetallic layer was thicker than when pure

aluminium or AlSi11 alloy baths were used; also, some porosity was observed in this layer; and finally, the interface between the inner

layer and the cast iron substrate was the most irregular.

Go to article

Authors and Affiliations

R. Mola
T. Bucki
K. Wcisło
Download PDF Download RIS Download Bibtex

Abstract

In this study, a preliminary evaluation was made of the applicability ofthe signalsof the cutting forces, vibration and acoustic emission in

diagnosis of the hardness and microstructure of ausferritic ductile iron and tool edge wear rate during its machining. Tests were performed

on pearlitic-ferritic ductile iron and on three types of ausferritic ductile iron obtained by austempering at 400, 370 and 320⁰C for 180

minutes. Signals of the cutting forces (F), vibration (V) and acoustic emission (AE) were registered while milling each type of the cast iron

with a milling cutter at different degrees of wear. Based on individual signals from all the sensors, numerous measures were determined

such as e.g. the average or maximum signal value. It was found that different measures from all the sensors tested depended on the

microstructure and hardness of the examined material, and on the tool condition. Knowing hardness of the material and the cutting tool

edge condition, it is possible to determine the structure of the material .Simultaneous diagnosis of microstructure, hardness, and the tool

condition is probably feasible, but it would require the application of a diagnostic strategy based on the integration of numerous measures,

e.g. using neural networks.

Go to article

Authors and Affiliations

D. Myszka
S. Bombiński
Download PDF Download RIS Download Bibtex

Abstract

The work presents the test result of the influence of cooling rate on the microstructure of AZ91 alloy, Vickers micro-hardness and Brinell

hardness. Studies cooling and crystallization of AZ91 alloy was cast into the ceramic shells pre-heated to 180 ° C and then air-cooled at

ambient temperature or intensively super cooled in the liquid coolant. The TDA method was applied to record and characterize the thermal

effect resulting from the phase transformations occurring during the crystallization of AZ91 alloy. The kinetics and dynamics of the

thermal processes of crystallization of AZ91 alloy in the ceramic shells were determined. Metallographic tests were performed with the

use of an optical microscope. A comparison of these test results with the thermal effect recorded by way of the TDA method was made.

Influence of cooling rate of AZ91 on HV0, 01 micro-hardness and Brinell hardness alloy was examined.

Go to article

Authors and Affiliations

C. Rapiejko
E. Czekaj
T. Pacyniak
B. Pisarek
Download PDF Download RIS Download Bibtex

Abstract

The mathematical and numerical simulation model of the liquid steel flow in a tundish is presented in this paper. The problem was treated

as a complex and solved by the finite element method. The single-strand slab tundish is used to continuous casting slabs. The internal work

space of the tundish was modified by the following flow control devices. The first device was a striker pad situated in the pouring tundish

zone. The second device was a baffle with three holes and the third device was a baffle without hole. The main purpose of using these

devices was to cause a quiet liquid mixing as well as give directional metal flow upwards which facilitated inclusion floatation. The

interaction of flow control devices on hydrodynamic conditions was received from numerical simulation. As a result of the computations

carried out, the liquid steel flow and steel temperature fields were obtained. The influence of the tundish modification on velocity fields in

the liquid phase of steel was estimated, because these have an essential influence on high quality of a continuous steel cast slab.

Go to article

Authors and Affiliations

L. Sowa
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of simulation of alloy layer formation process on the model casting. The first aim of this study was to

determine the influence of the location of the heat center on alloy layer’s thickness with the use of computer simulation. The second aim of

this study was to predict the thickness of the layer. For changes of technological parameters, the distribution of temperature in the model

casting and temperature changes in the characteristic points of the casting were found for established changes of technological

parameters. Numerical calculations were performed using programs NovaFlow&Solid. The process of obtaining the alloy layer with good

quality and proper thickness depends on: pouring temperature, time of premould hold at the temperature above 1300o

C. The obtained

results of simulation were loaded to authorial program Preforma 1.1 in order to determine the predicted thickness of the alloy casting

Go to article

Authors and Affiliations

J. Szajnar
C. Baron
A. Walasek
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the effect of the temperature and hold time in the holding furnace of 226 silumin on the characteristic quantities of

TDA curves. The temperature of phase transformations and the cooling rate were tested.It has been shown that increasing both the hold

time and the temperature in the holdingfurnace cause the decreasethe end ofα+Al9Fe3Si2+β and α+Al2Cu+βternary eutectics

crystallizationtemperature in the tested silumin. This is due to the fact an increase in amounts of impurities as a result of reacting theliquid

alloy with the gases contained in the air.It has been shown, however, that examined technological factors ofthe metal preparation do not

cause systematic changes in the cooling rate.

Go to article

Authors and Affiliations

T. Pacyniak
G. Gumienny
T. Szymczak

Instructions for authors

Submission


To submit the article, please use the Editorial System provided here:

https://www.editorialsystem.com/afe


Papers submitted in any other way will not be accepted.



The Journal does not have submission charges.


The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.


Bank account details:


Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748


Instructions for the preparation of an Archives of Foundry Engineering Paper

Publication Ethics Policy


Publication Ethics Policy

The standards of expected ethical behavior for all parties involved in publishing in the Archives of Foundry Engineering journal: the author, the journal editor and editorial board, the peer reviewers and the publisher are listed below.

All the articles submitted for publication in Archives of Foundry Engineering are peer reviewed for authenticity, ethical issues and usefulness as per Review Procedure document.

Duties of Editors
1. Monitoring the ethical standards: Editorial Board monitors the ethical standards of the submitted manuscripts and takes all possible measures against any publication malpractices.
2. Fair play: Submitted manuscripts are evaluated for their scientific content without regard to race, gender, sexual orientation, religious beliefs, citizenship, political ideology or any other issues that is a personal or human right.
3. Publication decisions: The Editor in Chief is responsible for deciding which of the submitted articles should or should not be published. The decision to accept or reject the article is based on its importance, originality, clarity, and its relevance to the scope of the journal and is made after the review process.
4. Confidentiality: The Editor in Chief and the members of the Editorial Board t ensure that all materials submitted to the journal remain confidential during the review process. They must not disclose any information about a submitted manuscript to anyone other than the parties involved in the publishing process i.e., authors, reviewers, potential reviewers, other editorial advisers, and the publisher.
5. Disclosure and conflict of interest: Unpublished materials disclosed in the submitted manuscript must not be used by the Editor and the Editorial Board in their own research without written consent of authors. Editors always precludes business needs from compromising intellectual and ethical standards.
6. Maintain the integrity of the academic record: The editors will guard the integrity of the published academic record by issuing corrections and retractions when needed and pursuing suspected or alleged research and publication misconduct. Plagiarism and fraudulent data is not acceptable. Editorial Board always be willing to publish corrections, clarifications, retractions and apologies when needed.

Retractions of the articles: the Editor in Chief will consider retracting a publication if:
- there are clear evidences that the findings are unreliable, either as a result of misconduct (e.g. data fabrication) or honest error (e.g. miscalculation or experimental error)
- the findings have previously been published elsewhere without proper cross-referencing, permission or justification (cases of redundant publication)
- it constitutes plagiarism or reports unethical research.
Notice of the retraction will be linked to the retracted article (by including the title and authors in the retraction heading), clearly identifies the retracted article and state who is retracting the article. Retraction notices should always mention the reason(s) for retraction to distinguish honest error from misconduct.
Retracted articles will not be removed from printed copies of the journal nor from electronic archives but their retracted status will be indicated as clearly as possible.

Duties of Authors
1. Reporting standards: Authors of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. The paper should contain sufficient details and references to permit others to replicate the work. The fabrication of results and making of fraudulent or inaccurate statements constitute unethical behavior and will cause rejection or retraction of a manuscript or a published article.
2. Originality and plagiarism: Authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others they need to be cited or quoted. Plagiarism and fraudulent data is not acceptable.
3. Data access retention: Authors may be asked to provide the raw data for editorial review, should be prepared to provide public access to such data, and should be prepared to retain such data for a reasonable time after publication of their paper.
4. Multiple or concurrent publication: Authors should not in general publish a manuscript describing essentially the same research in more than one journal. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable.
5. Authorship of the manuscript: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the report study. All those who have made contributions should be listed as co-authors. The corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included in the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.
6. Acknowledgement of sources: The proper acknowledgment of the work of others must always be given. The authors should cite publications that have been influential in determining the scope of the reported work.
7. Fundamental errors in published works: When the author discovers a significant error or inaccuracy in his/her own published work, it is the author’s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Duties of Reviewers
1. Contribution to editorial decisions: Peer reviews assist the editor in making editorial decisions and may also help authors to improve their manuscript.
2. Promptness: Any selected reviewer who feels unqualified to review the research reported in a manuscript or knows that its timely review will be impossible should notify the editor and excuse himself/herself from the review process.
3. Confidentiality: All manuscript received for review must be treated as confidential documents. They must not be shown to or discussed with others except those authorized by the editor.
4. Standards of objectivity: Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Reviewers should express their views clearly with appropriate supporting arguments.
5. Acknowledgement of sources: Reviewers should identify the relevant published work that has not been cited by authors. Any substantial similarity or overlap between the manuscript under consideration and any other published paper should be reported to the editor.
6. Disclosure and conflict of Interest: Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider evaluating manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relations with any of the authors, companies, or institutions involved in writing a paper.

Peer-review Procedure


Review Procedure


The Review Procedure for articles submitted to the Archives of Foundry Engineering agrees with the recommendations of the Ministry of Science and Higher Education published in a booklet: ‘Dobre praktyki w procedurach recenzyjnych w nauce’ (MNiSW, Dobre praktyki w procedurach recenzyjnych w nauce, Warszawa 2011).

Papers submitted to the Editorial System are primarily screened by editors with respect to scope, formal issues and used template. Texts with obvious errors (formatting other than requested, missing references, evidently low scientific quality) will be rejected at this stage or will be sent for the adjustments.

Once verified each article is checked by the anti-plagiarism system Cross Check powered by iThenticate®. After the positive response, the article is moved into: Initially verified manuscripts. When the similarity level is too high, the article will be rejected. There is no strict rule (i.e., percentage of the similarity), and it is always subject to the Editor’s decision.
Initially verified manuscripts are then sent to at least four independent referees outside the author’s institution and at least two of them outside of Poland, who:

have no conflict of interests with the author,
are not in professional relationships with the author,
are competent in a given discipline and have at least a doctorate degree and respective
scientific achievements,
have a good reputation as reviewers.


The review form is available online at the Journal’s Editorial System and contains the following sections:

1. Article number and title in the Editorial System

2. The statement of the Reviewer (to choose the right options):

I declare that I have not guessed the identity of the Author. I declare that I have guessed the identity of the Author, but there is no conflict of interest

3. Detailed evaluation of the manuscript against other researches published to this point:

Do you think that the paper title corresponds with its contents?
Yes No
Do you think that the abstract expresses the paper contents well?
Yes No
Are the results or methods presented in the paper novel?
Yes No
Do the author(s) state clearly what they have achieved?
Yes No
Do you find the terminology employed proper?
Yes No
Do you find the bibliography representative and up-to-date?
Yes No
Do you find all necessary illustrations and tables?
Yes No
Do you think that the paper will be of interest to the journal readers?
Yes No

4. Reviewer conclusion

Accept without changes
Accept after changes suggested by reviewer.
Rate manuscript once again after major changes and another review
Reject


5. Information for Editors (not visible for authors).

6. Information for Authors


Reviewing is carried out in the double blind process (authors and reviewers do not know each other’s names).

The appointed reviewers obtain summary of the text and it is his/her decision upon accepting/rejecting the paper for review within a given time period 21 days.

The reviewers are obliged to keep opinions about the paper confidential and to not use knowledge about it before publication.

The reviewers send their review to the Archives of Foundry Engineering by Editorial System. The review is archived in the system.

Editors do not accept reviews, which do not conform to merit and formal rules of scientific reviewing like short positive or negative remarks not supported by a close scrutiny or definitely critical reviews with positive final conclusion. The reviewer’s remarks are sent to the author. He/she has to consider all remarks and revise the text accordingly.

The author of the text has the right to comment on the conclusions in case he/she does not agree with them. He/she can request the article withdrawal at any step of the article processing.

The Editor-in-Chief (supported by members of the Editorial Board) decides on publication based on remarks and conclusions presented by the reviewers, author’s comments and the final version of the manuscript.

The final Editor’s decision can be as follows:
Accept without changes
Reject


The rules for acceptance or rejection of the paper and the review form are available on the Web page of the AFE publisher.

Once a year Editorial Office publishes present list of cooperating reviewers.
Reviewing is free of charge.
All articles, including those rejected and withdrawn, are archived in the Editorial System.

Reviewers

List of Reviewers 2022

Shailee Acharya - S. V. I. T Vasad, India
Vivek Ayar - Birla Vishvakarma Mahavidyalaya Vallabh Vidyanagar, India
Mohammad Azadi - Semnan University, Iran
Azwinur Azwinur - Politeknik Negeri Lhokseumawe, Indonesia
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Iwona Bednarczyk - Silesian University of Technology, Gliwice, Poland
Artur Bobrowski - AGH University of Science and Technology, Kraków
Poland Łukasz Bohdal - Koszalin University of Technology, Koszalin Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Joanna Borowiecka-Jamrozek- The Kielce University of Technology, Poland
Debashish Bose - Metso Outotec India Private Limited, Vadodara, India
Andriy Burbelko - AGH University of Science and Technology, Kraków
Poland Ganesh Chate - KLS Gogte Institute of Technology, India
Murat Çolak - Bayburt University, Turkey
Adam Cwudziński - Politechnika Częstochowska, Częstochowa, Poland
Derya Dispinar- Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Gdynia, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Flora Faleschini - University of Padova, Italy
Imre Felde - Obuda University, Hungary
Róbert Findorák - Technical University of Košice, Slovak Republic
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Marek Góral - Rzeszow University of Technology, Poland
Barbara Grzegorczyk - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Ozen Gursoy - University of Padova, Italy
Gábor Gyarmati - University of Miskolc, Hungary
Jakub Hajkowski - Poznan University of Technology, Poland
Marek Hawryluk - Wroclaw University of Science and Technology, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Poland
Dario Iljkić - University of Rijeka, Croatia
Magdalena Jabłońska - Silesian University of Technology, Gliwice, Poland
Nalepa Jakub - Silesian University of Technology, Gliwice, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Aneta Jakubus - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Łukasz Jamrozowicz - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - AGH University of Science and Technology, Kraków, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Marcin Kondracki - Silesian University of Technology, Gliwice Poland
Vitaliy Korendiy - Lviv Polytechnic National University, Lviv, Ukraine
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Malgorzata Lagiewka - Politechnika Czestochowska, Częstochowa, Poland
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Jingkun Li - University of Science and Technology Beijing, China
Petr Lichy - Technical University Ostrava, Czech Republic
Y.C. Lin - Central South University, China
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Ewa Majchrzak - Silesian University of Technology, Gliwice, Poland
Barnali Maji - NIT-Durgapur: National Institute of Technology, Durgapur, India
Pawel Malinowski - AGH University of Science and Technology, Kraków, Poland
Marek Matejka - University of Zilina, Slovak Republic
Bohdan Mochnacki - Technical University of Occupational Safety Management, Katowice, Poland
Grzegorz Moskal - Silesian University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Silesian University of Technology, Gliwice, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Krzysztof Naplocha - Wrocław University of Science and Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Tomáš Obzina - VSB - Technical University of Ostrava, Czech Republic
Peiman Omranian Mohammadi - Shahid Bahonar University of Kerman, Iran
Zenon Opiekun - Politechnika Rzeszowska, Rzeszów, Poland
Onur Özbek - Duzce University, Turkey
Richard Pastirčák - University of Žilina, Slovak Republic
Miroslawa Pawlyta - Silesian University of Technology, Gliwice, Poland
Jacek Pezda - ATH Bielsko-Biała, Poland
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Jacek Pieprzyca - Silesian University of Technology, Gliwice, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Marcela Pokusová - Slovak Technical University in Bratislava, Slovak Republic
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich, West Midlands, United Kingdom
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University Thailand Amit Sata - MEFGI, Faculty of Engineering, India
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Vasudev Shinde - DKTE' s Textile and Engineering India Robert Sika - Politechnika Poznańska, Poznań, Poland
Bozo Smoljan - University North Croatia, Croatia
Leszek Sowa - Politechnika Częstochowska, Częstochowa, Poland
Sławomir Spadło - Kielce University of Technology, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Grzegorz Stradomski - Czestochowa University of Technology, Poland
Roland Suba - Schaeffler Skalica, spol. s r.o., Slovak Republic
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Jan Szajnar - Silesian University of Technology, Gliwice, Poland
Michal Szucki - TU Bergakademie Freiberg, Germany
Tomasz Szymczak - Lodz University of Technology, Poland
Damian Słota - Silesian University of Technology, Gliwice, Poland
Grzegorz Tęcza - AGH University of Science and Technology, Kraków, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Mirosław Tupaj - Rzeszow University of Technology, Poland
Robert B Tuttle - Western Michigan University United States Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Iveta Vaskova - Technical University of Kosice, Slovak Republic
Dorota Wilk-Kołodziejczyk - AGH University of Science and Technology, Kraków, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Çağlar Yüksel - Atatürk University, Turkey
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Jerzy Zych - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2021

Czesław Baron - Silesian University of Technology, Gliwice, Poland
Imam Basori - State University of Jakarta, Indonesia
Leszek Blacha - Silesian University of Technology, Gliwice
Poland Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Zilina, Slovak Republic
Marcin Brzeziński - AGH University of Science and Technology, Kraków, Poland
Andriy Burbelko - AGH University of Science and Technology, Kraków, Poland
Alexandros Charitos - TU Bergakademie Freiberg, Germany
Ganesh Chate - KLS Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Zhipei Chen - University of Technology, Netherlands
Józef Dańko - AGH University of Science and Technology, Kraków, Poland
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Maciej Dyzia - Silesian University of Technology, Poland
Eray Erzi - Istanbul University, Turkey
Przemysław Fima - Institute of Metallurgy and Materials Science PAN, Kraków, Poland
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Dipak Ghosh - Forace Polymers P Ltd., India
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Gábor Gyarmati - Foundry Institute, University of Miskolc, Hungary
Krzysztof Herbuś - Silesian University of Technology, Gliwice, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Kraków, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Agata Jażdżewska - Gdansk University of Technology, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Centre of Casting Technology, Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Adrian Kampa - Silesian University of Technology, Gliwice, Poland
Wojciech Kapturkiewicz- AGH University of Science and Technology, Kraków, Poland
Tatiana Karkoszka - Silesian University of Technology, Gliwice, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Himanshu Khandelwal - National Institute of Foundry & Forging Technology, Hatia, Ranchi, India
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Grzegorz Kokot - Silesian University of Technology, Gliwice, Poland
Ladislav Kolařík - CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Dariusz Kopyciński - AGH University of Science and Technology, Kraków, Poland
Janusz Kozana - AGH University of Science and Technology, Kraków, Poland
Tomasz Kozieł - AGH University of Science and Technology, Kraków, Poland
Aleksandra Kozłowska - Silesian University of Technology, Gliwice Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Wacław Kuś - Silesian University of Technology, Gliwice, Poland
Jacques Lacaze - University of Toulouse, France
Avinash Lakshmikanthan - Nitte Meenakshi Institute of Technology, India
Jaime Lazaro-Nebreda - Brunel Centre for Advanced Solidification Technology, Brunel University London, United Kingdom
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Maria Maj - AGH University of Science and Technology, Kraków, Poland
Jerzy Mendakiewicz - Silesian University of Technology, Gliwice, Poland
Hanna Myalska-Głowacka - Silesian University of Technology, Gliwice, Poland
Kostiantyn Mykhalenkov - Physics-Technological Institute of Metals and Alloys, National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Mitsuhiro Okayasu - Okayama University, Japan
Agung Pambudi - Sebelas Maret University in Indonesia, Indonesia
Richard Pastirčák - University of Žilina, Slovak Republic
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Seyda Polat - Kocaeli University, Turkey
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Alena Pribulova - Technical University of Košice, Slovak Republic
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich West Midlands, United Kingdom
Iulian Riposan - Politehnica University of Bucharest, Romania
Ferdynand Romankiewicz - Uniwersytet Zielonogórski, Zielona Góra, Poland
Mario Rosso - Politecnico di Torino, Italy
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University, Thailand
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Karthik Shankar - Amrita Vishwa Vidyapeetham , Amritapuri, India
Vasudev Shinde - Shivaji University, Kolhapur, Rajwada, Ichalkaranji, India
Robert Sika - Politechnika Poznańska, Poznań, Poland
Jerzy Sobczak - AGH University of Science and Technology, Kraków, Poland
Sebastian Sobula - AGH University of Science and Technology, Kraków, Poland
Marek Soiński - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Andrzej Studnicki - Silesian University of Technology, Gliwice, Poland
Mayur Sutaria - Charotar University of Science and Technology, CHARUSAT, Gujarat, India
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Sutiyoko Sutiyoko - Manufacturing Polytechnic of Ceper, Klaten, Indonesia
Tomasz Szymczak - Lodz University of Technology, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Jacek Trzaska - Silesian University of Technology, Gliwice, Poland
Robert B Tuttle - Western Michigan University, United States
Muhammet Uludag - Selcuk University, Turkey
Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Tomasz Wrobel - Silesian University of Technology, Gliwice, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Antonin Zadera - Brno University of Technology, Czech Republic
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Bo Zhang - Hunan University of Technology, China
Xiang Zhang - Wuhan University of Science and Technology, China
Eugeniusz Ziółkowski - AGH University of Science and Technology, Kraków, Poland
Sylwia Żymankowska-Kumon - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2020

Shailee Acharya - S. V. I. T Vasad, India
Mohammad Azadi - Semnan University, Iran
Rafał Babilas - Silesian University of Technology, Gliwice, Poland
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Emin Bayraktar - Supmeca/LISMMA-Paris, France
Jaroslav Beňo - VSB-Technical University of Ostrava, Czech Republic
Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Grzegorz Boczkal - AGH University of Science and Technology, Kraków, Poland
Wojciech Borek - Silesian University of Technology, Gliwice, Poland
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Žilina, Slovak Republic
John Campbell - University of Birmingham, United Kingdom
Ganesh Chate - Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Mirosław Cholewa - Silesian University of Technology, Gliwice, Poland
Khanh Dang - Hanoi University of Science and Technology, Viet Nam
Vladislav Deev - Wuhan Textile University, China
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Malwina Dojka - Silesian University of Technology, Gliwice, Poland
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Sergii Gerasin - Pryazovskyi State Technical University, Ukraine
Dipak Ghosh - Forace Polymers Ltd, India
Marcin Górny - AGH University of Science and Technology, Kraków, Poland
Marcin Gołąbczak - Lodz University of Technology, Poland
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Libor Hlavac - VSB Ostrava, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Philippe Jacquet - ECAM, Lyon, France
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Damian Janicki - Silesian University of Technology, Gliwice, Poland
Witold Janik - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - Akademia Górniczo-Hutnicza, Kraków, Poland
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Ladislav Kolařík -Institute of Engineering Technology CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Sergey Konovalov - Samara National Research University, Russia
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Janusz Krawczyk - AGH University of Science and Technology, Kraków, Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Agnieszka Kupiec-Sobczak - Cracow University of Technology, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Aleksander Lisiecki - Silesian University of Technology, Gliwice, Poland
Krzysztof Lukaszkowicz - Silesian University of Technology, Gliwice, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Katarzyna Major-Gabryś - AGH University of Science and Technology, Kraków, Poland
Pavlo Maruschak - Ternopil Ivan Pului National Technical University, Ukraine
Sanjay Mohan - Shri Mata Vaishno Devi University, India
Marek Mróz - Politechnika Rzeszowska, Rzeszów, Poland
Sebastian Mróz - Czestochowa University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Częstochowa, Poland
Konstantin Nikitin - Samara State Technical University, Russia
Daniel Pakuła - Silesian University of Technology, Gliwice, Poland


This page uses 'cookies'. Learn more