Nauki Techniczne

Geodesy and Cartography

Zawartość

Geodesy and Cartography | 2011 | vol. 60 | No 2 |

Abstrakt

The method that is proposed in the present paper is a special case of squared M split estimation. It concerns a direct estimation of the shift between the parameters of the functional models of geodetic observations. The shift in question may result from, for example, deformation of a geodetic network or other non-random disturbances that may influence coordinates of the network points. The paper also presents the example where such shift is identified with a phase displacement of a wave. The shift is estimated on the basis of wave observations and without any knowledge where such displacement took place. The estimates of the shift that are proposed in the paper are named Shift- M split estimators.
Przejdź do artykułu

Abstrakt

In the recent years three-dimensional buildings modelling based on an raw air- borne laser scanning point clouds, became an important issue. A significant step towards 3D modelling is buildings segmentation in laser scanning data. For this purpose an algorithm, based on the multi-resolution analysis in wavelet domain, is proposed in the paper. The proposed method concentrates only on buildings, which have to be segmented. All other objects and terrain surface have to be removed. The algorithm works on gridded data. The wavelet-based segmentation proceeds in the following main steps: wavelet decomposition up to appropriately chosen level, thresholding on the chosen and adjacent levels, removal of all coefficients in the so-called influence pyramid and wavelet reconstruction. If buildings on several scaling spaces have to be segmented, the procedure should be applied iteratively. The wavelet approach makes the procedure very fast. However, the limitation of the proposed procedure is its scale-based distinction between objects to be segmented and the rest.
Przejdź do artykułu

Abstrakt

In deformation analyses, it is important to find a stable reference frame and therefore the stability of the possible reference points must be controlled. There are several methods to test such stability. The paper’s objective is to examine one of such methods, namely the method based on application of R-estimation, for its sensitivity to gross errors. The method in question applies three robust estimators, however, it is not robust itself. The robustness of the method depends on the number of unstable points (the fewer unstable points there are, the more robust is the proposed method). Such property makes it important to know how the estimates applied and the strategy itself respond to a gross error. The empirical influence functions (EIF) can provide necessary information and help to understand the response of the strategy for a gross error. The paper presents examples of EIFs of the estimates, their application in the strategy and describes how important and useful is such knowledge in practice.
Przejdź do artykułu

Abstrakt

The paper deals with large-scale crustal deformation due to hydrological surface loads and its influence on seasonal variation of GPS estimated heights. The research was concentrated on the area of Poland. The deformation caused by continental water storage has been computed on the basis of WaterGAP Hydrological Model data by applying convolution of water masses with appropriate Green’s function. Obtained site displacements were compared with height changes estimated from GPS observations using the Precise Point Positioning (PPP) method. Long time series of the solutions for 4 stations were used for evaluation of surface loading phenomena. Good agreement both in amplitude and phase was found, however some discrepancies remain which are assigned to single point positioning technique deficiencies. Annual repeatability of water cycle and demanding procedure for computing site displacements for each site, allowed to develop a simple model for Poland which could be applied to remove (or highly reduce) seasonal hydrological signal from time series of GPS solutions.
Przejdź do artykułu

Abstrakt

A new method to transform from Cartesian to geodetic coordinates is presented. It is based on the solution of a system of nonlinear equations with respect to the coordinates of the point projected onto the ellipsoid along the normal. Newton’s method and a modification of Newton’s method were applied to give third-order convergence. The method developed was compared to some well known iterative techniques. All methods were tested on three ellipsoidal height ranges: namely, (-10 – 10 km) (terrestrial), (20 – 1000 km), and (1000 – 36000 km) (satellite). One iteration of the presented method, implemented with the third-order convergence modified Newton’s method, is necessary to obtain a satisfactory level of accuracy for the geodetic latitude ( σ φ < 0.0004”) and height ( σ h < 10 − 6 km, i.e. less than a millimetre) for all the heights tested. The method is slightly slower than the method of Fukushima (2006) and Fukushima’s (1999) fast implementation of Bowring’s (1976) method.
Przejdź do artykułu

Redakcja

Editor-in-Chief
Elżbieta Bielecka, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland


Editorial Advisory Board
Aleksandra Bujakiewicz, Warsaw University of Technology, Poland
Beata Medynska-Gulij, Adam Mickiewicz University (UAM), Poland
Edward Osada, University of Lower Silesia, Poland
Jan Krynski, Institute of Geodesy and Cartography (IGiK), Poland
Jerzy Rogowski, Warsaw University of Technology, Poland
Zbigniew Wisniewski, University of Warmia and Mazury in Olsztyn (UWM), Poland
Josef Adam, University of Technology and Economics, Hungary
Adam Chrzanowski, University of New Brunswick, Canada
Dorota Grejner-Brzezińska, The Ohio State University, USA
Jaakko Makinen, Finnish Geodetic Institute, Finland
Helmut Moritz, Graz University of Technology, Austria
Heinz Ruther, University of Cape Town, RSA
Michael Sideris, University of Calgary, Canada
Gabriel Strykowski, Technical University of Denmark, Denmark
Jaroslaw S. Yatskiv, Main Astronomical Observatory, Ukraine


Editors
Statistical
Pawel Kamiński, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland


Technical Editors
Karolina Krawczyk, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland
Krzysztof Bielecki, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland

 

Kontakt

Editor-in-Chief
Elżbieta Bielecka
e-mail:
ebielecka@wat.edu.pl
gik@igik.edu.pl

Instrukcje dla autorów

GEODESY AND CARTOGRAPHY is a semiannually journal publishing peer-reviewed articles with original solutions of theoretical, experimental or applicable problems in the field of geodesy, surveying engineering, cartography, photogrammetry and related disciplines. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops.
Legal requirements
The author(s) guarantee(s) that the manuscript will not be published elsewhere in any language without the consent of the copyright owners, that the rights of the third parties will not be violated, and that the publisher will not held legally responsible should there be any claims for compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Manuscript submission
Submission of the manuscript implies: that the work has not been published before (except in form of an abstract or as a part of a published lecture, review or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institution where the work was carried out.
Articles should be submitted on line www.editorialsystem.com/geocart/
In case the manuscript has more than one author its submission should include the list specifying contribution of each author to the manuscript with indicating who is the author of the concept, assumptions, research methodology, data processing. Major responsibility is of the author submitting the manuscript.
The Editor will counteract in GEODESY AND CARTOGRAPHY against Ghostwriting, i.e. when someone substantially contributed to the preparation of the manuscript but has neither been included to the list of authors nor his role is mentioned in the acknowledgements as well as Ghost authorship, i.e. when the author/co-author did not contribute to the manuscript or his contribution is negligible. Any detected case of Ghostwriting and Ghost authorship will be exposed and the appropriate subjects, i.e. employers, scientific organisations, associations of editors etc, will be informed.
Electronic submission of a manuscript
Use the template to format your paper.

Layout guidelines:- use a normal, plain Times Roman font for text, italics for textual emphasis, bold for mathematical vectors,
- use the table functions of your word processing program, not spreadsheets, to make tables,
- use the equation editor of your word processing program for equations,
- place all figures with figure legends and tables with table legends in the manuscript,
- submit also all figures as separate files.
Data format:
Save your manuscript in RTF or DOC Microsoft Word for Windows format.
Illustrations:
Figures should be provided in the vector graphics or JPG or TIF (specifically for halftone illustrations) formats will be accepted. The filename should include the figure number. Figure legends should be included in the text and not in the figure file. Scanned line drawings should be digitised with a minimum resolution of 800 dpi relative to the final figure size. For digital halftones, 300 dpi is usually sufficient. Non-standard fonts used in the vector graphics must be included. Please do not draw with hairlines. The minimum line width is 0.2 mm (0.567 pt) relative to the final size.
Manuscript preparation
Manuscripts should be typed in single-line spacing throughout on the A4 sheet with 2.5 cm margins .
1. Title page:
- a concise and informative title
- the name(s) of the author(s)
- the name(s) and address(es) of the affiliation(s) of the author(s)
- the e-mail address, telephone and fax numbers of the communicating author
2. Abstract: the paper must be preceded by a sufficiently informative abstract presenting the most important results and conclusions.
3. Keywords: three to five keywords should be supplied.
4. Introduction: should state the purpose of the investigation and give a short review of the pertinent literature.
5. Main text: including method and input data (working details must be given concisely; well-known operations should not be described in detail); results presented in tabular or graph form, with appropriate statistical evaluation, discussion of results - statement of conclusions drawn from the work, conclusions.
6. Acknowledgements: should be brief and consist of grant or individuals that require acknowledgement.
The names of funding organizations or institutions providing data should be given in full.
7. References: the list of references should be in alphabetical order and should only include works that are cited in the text and that have been published or accepted for publication. Personal communications could only be mentioned in the text. References should consist of the complete list of authors and should be given in the following form:
In the text, references should be cited by author(s) last name and year: e.g. (Beutler, 2003a), (Featherstone and Kirby, 2000), (Schwarz et al., 1990), (Sjöberg et al., 2000; Strykowski, 2001b; 2002).
8. Formulae and symbols: must be written legibly and will be typeset in italics. One-layer indexing is preferable. Numbering of formulae, if necessary should be given in brackets fitted to the right margin.
9. Footnotes: to the text should be numbered consecutively and placed on the bottom of the page to which they refer. Footnotes to the tables should be indicated by superscript lowercase letters.
10. Illustrations and tables: all figures (photographs, graphs or diagrams) and tables should be cited in the text and each numbered consecutively throughout. Lowercase roman letters should identify figure parts. Figure legends must be brief and must contain self-sufficient explanations of the illustrations. Each table should have a title and a legend explaining any abbreviation used in that table.
11. Units: SI units must be used.
12. Running head: consisting of at most 60 characters a concise banner representing the title of the article must be submitted by the author(s).
Proofreading
Proofreading is the responsibility of the author. Corrections should be clear; standard correction marks should be used. Corrections that lead to a change in the page layout should be avoided. The author is entitled to formal corrections only. Substantial changes in content, e.g. new results, corrected values, title and authorship are not allowed without the approval of the editor. In such case please contact the Editor-in-chief before returning the proofs.
References formatting
a. Journal Article (one author)
Nikora, V. (2006). Hydrodynamics of aquatic ecosystems: spatial-averaging perspective. Acta Geophysica, 55(1), 3-10. DOI: 10.2478/s11600-006-0043-6.
b. Journal Article (two or more authors)
Cudak, M. and Karcz J. (2006). Momentum transfer in an agitated vessel with off-centred impellers. Chem. Pap. 60(5), 375-380. DOI: 10.2478/s11696-006-0068-y.
c. Journal article from an online database
Czajgucki Z., Zimecki M. & Andruszkiewicz R. (2006, December). The immunoregulatory effects of edeine analogues in mice [Abstract]. Cell. Mol. Biol. Lett. 12(3), 149-161. Retrieved December 6.
d. Book (one author)
Baxter, R. (1982). Exactly Solvable Models in Statistical Mechanics. New York: Academic Press.
e. Book (two or more authors)
Kleiner, F.S., Mamiya C.J. and Tansey R.G. (2001). Gardner’s art through the ages (11th ed.). Fort Worth, USA: Harcourt College Publishers.
f. Book chapter or article in an edited book
Roll, W.P. (1976). ESP and memory. In J.M.O. Wheatley and H.L. Edge (Eds.), Philosophical dimensions of parapsychology (pp. 154-184). Springfield, IL: American Psychiatric Press.
g. Proceedings from a conference
Field, G. (2001). Rethinking reference rethought. In Revelling in Reference: Reference and Information Services Section Symposium, 12-14 October 2001 (pp. 59-64). Melbourne, Victoria, Australia: Australian Library and Information Association.
h. ebook
Johnson, A. (2000). Abstract Computing Machines. Springer Berlin Heidelberg. Retrieved March 30, 2006, from SpringerLink http://springerlink.com/content/w25154. DOI: 10.1007/b138965.
i. Report
Osgood, D. W., and Wilson, J. K. (1990). Covariation of adolescent health problems. Lincoln: University of Nebraska. (NTIS No. PB 91-154 377/AS).
j. Government publication
Ministerial Council on Drug Strategy. (1997). The national drug strategy: Mapping the future. Canberra: Australian Government Publishing Service.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji