Applied sciences

Archives of Control Sciences


Archives of Control Sciences | 2017 | No 1 |


Abstract The adaptive boundary stabilization is investigated for a class of systems described by second-order hyperbolic PDEs with unknown coefficient. The proposed control scheme only utilizes measurement on top boundary and assume anti-damping dynamics on the opposite boundary which is the main feature of our work. To cope with the lack of full state measurements, we introduce Riemann variables which allow us reformulate the second-order in time hyperbolic PDE as a system with linear input-delay dynamics. Then, the infinite-dimensional time-delay tools are employed to design the controller. Simulation results which applied on mathematical model of drilling system are given to demonstrate the effectiveness of the proposed control approach.
Go to article


Abstract The problem of eigenvalue assignment in fractional descriptor discrete-time linear systems is considered. Necessary and sufficient conditions for the existence of a solution to the problem are established. A procedure for computation of the gain matrices is given and illustrated by a numerical example.
Go to article


Abstract In the recent decades, fractional order systems have been found to be useful in many areas of physics and engineering. Hence, their efficient and accurate analog and digital simulations and numerical calculations have become very important especially in the fields of fractional control, fractional signal processing and fractional system identification. In this article, new analog and digital simulations and numerical calculations perspectives of fractional systems are considered. The main feature of this work is the introduction of an adjustable fractional order structure of the fractional integrator to facilitate and improve the simulations of the fractional order systems as well as the numerical resolution of the linear fractional order differential equations. First, the basic ideas of the proposed adjustable fractional order structure of the fractional integrator are presented. Then, the analog and digital simulations techniques of the fractional order systems and the numerical resolution of the linear fractional order differential equation are exposed. Illustrative examples of each step of this work are presented to show the effectiveness and the efficiency of the proposed fractional order systems analog and digital simulations and implementations techniques.
Go to article


Abstract Various optimization problems for linear parabolic systems with multiple constant time lags are considered. In this paper, we consider an optimal distributed control problem for a linear complex parabolic system in which different multiple constant time lags appear both in the state equation and in the Neumann boundary condition. Sufficient conditions for the existence of a unique solution of the parabolic time lag equation with the Neumann boundary condition are proved. The time horizon T is fixed. Making use of the Lions scheme [13], necessary and sufficient conditions of optimality for the Neumann problem with the quadratic performance functional with pointwise observation of the state and constrained control are derived. The example of application is also provided.
Go to article


Abstract We consider a model of fishery management, where n agents exploit a single population with strictly concave continuously differentiable growth function of Verhulst type. If the agent actions are coordinated and directed towards the maximization of the discounted cooperative revenue, then the biomass stabilizes at the level, defined by the well known “golden rule”. We show that for independent myopic harvesting agents such optimal (or ε-optimal) cooperative behavior can be stimulated by the proportional tax, depending on the resource stock, and equal to the marginal value function of the cooperative problem. To implement this taxation scheme we prove that the mentioned value function is strictly concave and continuously differentiable, although the instantaneous individual revenues may be neither concave nor differentiable.
Go to article


Abstract Bidirectional Inductive power transfer (IPT) systems behave as high order resonant networks and hence are highly sensitive to changes in system parameters. Traditional PID controllers often fail to maintain satisfactory power regulation in the presence of parametric uncertainties. To overcome these problems, this paper proposes a robust controller which is designed using linear matrix inequality (LMI) techniques. The output sensitivity to parametric uncertainty is explored and a linear fractional transformation of the nominal model and its uncertainty is discussed to generate a standard configuration for μ-synthesis and LMI analysis. An H controller is designed based on the structured singular value and LMI feasibility analysis with regard to uncertainties in the primary tuning capacitance, the primary and pickup inductors and the mutual inductance. Robust stability and robust performance of the system is studied through μ-synthesis and LMI feasibility analysis. Simulations and experiments are conducted to verify the power regulation performance of the proposed controller.
Go to article


Abstract In the paper a state filtration in a decentralized discrete time Linear Quadratic Gaussian problem formulated for a multisensor system is considered. Local optimal control laws depend on global state estimates and are calculated by each node. In a classical centralized information pattern the global state estimators use measurements data from all nodes. In a decentralized system the global state estimates are computed at each node using local state estimates based on local measurements and values of previous controls, from other nodes. In the paper, contrary to this, the controls are not transmitted between nodes. It leads to nonconventional filtration because the controls from other nodes are treated as random variables for each node. The cost for the additional reduced transmission is an increased filter computation at each node.
Go to article

Editorial office

Editor-in-Chief prof. dr hab. inż. Andrzej Świerniak

Deputy/ Managing Editor
Zbigniew Ogonowski, Silesian University of Technology, Gliwice, Poland

Editorial Advisory Board

Andrzej Bargiela, University of Nottingham, UK
Roman Barták, Charles University, Prague, Czech Rep.
Jacek Błażewicz, Poznań University of Technology, Poland
Reggie Davidrajuh, University of Stavanger, Norway
Andreas Deutsch, Technische Universität Dresden, Germany
Moritz Diehl, University of Freiburg, Germany
Władysław Findeisen, Warsaw University of Technology, Poland
Marcelo D.Fragoso, LNCC/MCT, Rio de Janeiro, Brasil
Avner Friedman, MBI Ohio State University, Columbus, USA
Alberto Gandolfi, IASI, Rome, Italy
Ryszard Gessing, Silesian University of Technology, Gliwice, Poland
Henryk Górecki, AGH University of Science and Technology, Poland
David Greenhalgh, University of Strathclyde, Glasgow, UK
Mats Gyllenberg, University of Helsinki, Finland
Wassim M. Haddad, Georigia University, Atlanta, USA
Raimo P. Hämäläinen, Aalto University School of Science, Finland
Alberto Isidori, Università di Roma "La Sapienza" Italia
Laszlo Kevicky, Hungarian Academy of Sciences, Hungary
Marek Kimmel, Rice University Houston, USA
Jerzy Klamka, Silesian University of Technology, Gliwice, Poland
Józef Korbicz, University of Zielona Góra, Poland
Irena Lasiecka, University of Virginia, USA
Urszula Ledzewicz, Southern Illinois University at Edwardsville, USA
Magdi S Mahmoud, KFUM, Dahram, Saudi Arabia
Krzysztof Malinowski, Warsaw University of Technology, Poland
Wojciech Mitkowski, AGH University of Science and Technology, Poland
Bozenna Pasik-Duncan, University of Kansas, Lawrence, USA
Ian Postlethwaite, Newcastle University, Newcastle, UK
Eric Rogers, University of Southampton, UK
Heinz Schaettler, Washington University, St Louis, USA
Ryszard Tadeusiewicz, AGH University of Science and Technology, Poland
Jan Węglarz, Poznań University of Technology, Poland
Liu Yungang, Shandong University, PRC
Valery D. Yurkevich, Novosibirsk State Technical University, Russia


Institute of Automatic Control
Silesian University of Technology
Akademicka 16
44-101 Gliwice, Poland



Instructions for authors

Each paper submitted is subject to a review procedure, and the publication decision is based on reviers' comments on the paper. To avoid delay, please prepare the manuscript carefully following the suggestions listed below.

Computer file of the manuscript may be sent by e-mail to the address of Assistant Editor or Preferred text processors is TeX or LaTeX, however Word and other processors are also acceptable. In case of difficulties in processing the text, the author may be asked to supply the ASCII export of the original file.

Manuscripts sent via ordinary post should be typewritten double-spaced on one side of a standard size (A4) paper. Left side margin should be approximately 3cm (1.2'') wide. Each page should contain approximately 30 lines of 60 characters each. The manuscript including figures and tables together with their captions should be submitted. A separate signed letter giving the Author's preferred address for correspondence and return of proofs should be enclosed. Manuscript is the basis for editorial work.

First page should include the title of the paper, first name(s) and surname(s) of the Author(s), and a short summary (abstract), not longer than 20 lines.

Keywords of max. 5 - 7 items should be included in manuscript.

Numeration. All chapters, including the introduction, should be numbered in arabic numerals. Equations, tables and figures as well as theorems, corollaries, examples etc., should be numbered consecutively throughout the paper in arabic numerals, except in appendices. Appendices should be numbered with capital letters, and numeration should be closed within individual appendices.

If the manuscript is not prepared with TeX, mathematical expressions should be carefully written so as not to arouse confusion. Care should be taken that subscripts and superscripts are easily readable.

Tables and figures should be placed as desired by the Author within the text or on separate sheets with their suggested location indicated by the number of table or figure in the text. Figures, graphs and pictures (referred to as Fig. in the manuscript) should be numbered at the beginning of their caption following the figure. All figures should be prepared as PostScript EPS files or LaTeX picture files; in special cases, bitmaps of figure are also acceptable. The numbers and titles of tables should be placed above the main body of each table.

References should be listed alphabetically at the end of the manuscript. They should be numbered in ascending order and the numbers should be inserted in square brackets. References should be organized as follows. First initial(s), surname(s) of the author(s) and title of article or book. Then, for papers: title of periodical or collective work, volume number (year of issue), issue number, and numbers of the first and the last page; for books: publisher's name(s), place and year of issue. Example:

  1. R. E. Kalman: Mathematical description of linear dynamical system. SIAM J. Control. 1(2), (1963), 152-192.
  2. F. C. Shweppe: Uncertain dynamic systems. Prentice-Hall, Englewood Cliffs, N.J. 1970.

Please, give full titles of journals; only common words like Journal, Proceedings, Conference, etc. may be abbreviated ( to J., Proc., Conf., ... respectively). References to publications in the body of the manuscript should be indicated by the numbers of the adequate references in square brackets. When the paper is set in TeX the preferable form of preparing references is Bib TeX bib database.

Footnotes should be placed in the manuscript, beginning with "Received..." (date to be filled in by Editor), the author's institutional affiliation and acknowledgement of financial support,, and continuing with numbered references. The number of footnotes should be held to a minimum.

List of symbols containing definitions of all symbols used, enclosed to the manuscript on a separate sheet, is required when the paper is not set in TeX and welcome in other cases.

Reprints. 10 reprints of each paper will be provided free of charge.

Submission of a paper implies the Author's irrevocable and exclusive authorization of the publisher to collect any sums or considerations for copying or reproduction payable by third parties.

Papers should be sent to:

Zbigniew Ogonowski
Institute of Automatic Control
Silesian University of Technology
Akademicka 16
44-101 Gliwice, Poland

This page uses 'cookies'. Learn more