Nauki Ścisłe i Nauki o Ziemi

Polish Polar Research

Zawartość

Polish Polar Research | 2018 | vol. 39 | No 1 |

Abstrakt

Rock glaciers are lobate or tongue-shaped landforms which consist of rock debris and have either an ice core or an ice-cemented matrix. Characteristics such as the landscape setting, morphology, material and current geomorphological state are universally used to classify rock glaciers. In Antarctica, rock glaciers have only been surveyed on the Antarctic Peninsula, Ellsworth Mountains and in Victoria Land. This paper presents the first data on the identification and description of rock glaciers in the Jutulsessen nunataks, Dronning Maud Land, East Antarctica. The rock glaciers in the Jutulsessen exhibit a variety of morphologies and states. Our data suggests that the rock glaciers in Brugdedalen and Jutuldalen are active, while the features at Vassdalen and Grjotlia are considered inactive, and a feature at Grjotøyra is considered relict. The described rock glaciers do not fit into existing classification systems and appear to be different to alpine, Arctic and Andean rock glaciers. They further present examples that fit both the ‘glaciogenic’ and ‘permafrost’ development theories.
Przejdź do artykułu

Abstrakt

Antarctica is perceived as one of the most pristine environments on Earth, though increasing human activities and global climate change raise concerns about preserving the continent’s environmental quality. Limited in distribution, soils are particularly vulnerable to disturbances and pollution, yet lack of baseline studies limits our abilities to recognize and monitor adverse effects of environmental change. To improve the understanding of natural geochemical variability of soils, a survey was conducted in the fellfield environments of Edmonson Point (Victoria Land). Soil samples were analyzed for six major (Fe, Ca, Mg, Na, K and Ti) and 24 trace elements (As, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Ga, Li, Mn, Mo, Ni, Pb, Rb, Sn, Sr, Tl, U, V, Y, Zn and Zr). Relationships among element concentrations in the samples and local bedrock were analyzed to identify their origin and similarities in geochemical cycles. Element concentrations in the soils were highly variable but generally within the lowest values reported elsewhere in Antarctica. Though values of Cd, Mn, Ni and Zn were relatively high, they are consistent with those in the local soil-forming rocks indicating an origin from natural sources rather than anthropogenic contamination. Chemical composition of soils vs. rocks pointed to alkali basalts as the lithogenic source of the soil matrix, but also indicated considerable alteration of elemental composition in the soil. Considering local environmental settings, the soil elemental content was likely affected by marine-derived inputs and very active hydrological processes which enhanced leaching and removal of mobilized elements. Both of these processes may be of particular importance within the context of global climate change as the predicted increases in temperature, water availability and length of the summer season would favor mineral weathering and increase geochemical mobility of elements.
Przejdź do artykułu

Abstrakt

A total number of 156 palaeomagnetic specimens of metacarbonates from 9 sites in Blomstrandhalvøya and Lovénøyane (Kongsfjorden, western Spitsbergen) and an additional 77 specimens of unmetamorphosed sediments infilling fractures (4 sites) within the Caledonian metamorphic basement of Blomstrandhalvøya were demagnetized. No relicts of pre-metamorphic magnetization were identified. The Natural Remanent Magnetization (NRM) pattern of metacarbonates is dominated by Caledonian (sensu lato) – Svalbardian and Late Mesozoic/Cenozoic secondary magnetic overprints carried by the pyrrhotite and magnetite/maghemite phases, respectively. The NRM of unmetamorphosed sediments infilling the karstic/tectonic fractures is dominated by hematite carrier. It revealed three stages of magnetization: Caledonian sensu lato, Carboniferous and Late Mesozoic/Cenozoic, which can be related to their initial fracturing, karstification and sedimentation or reactivation. As the majority of the palaeopoles calculated for the Kongsfjorden sites fit the 430 – 0 Ma sector of Laurussia reference path in an in situ orientation these results support the hypothesis that Blomstrandhalvøya and Lovénøyane escaped main Eurekan deformations. The potential rotation of the Kongsfjorden basement by any west dipping listric fault activity rotating the succession accompanying the opening of North Atlantic Ocean was not documented by the palaeomagnetic data presented here.
Przejdź do artykułu

Abstrakt

This paper reports on a morphometric analysis of land-terminating glaciers on southern and western Spitsbergen in the years 1936–2014. An attempt was made to estimate the deglaciation rate and the scale of its acceleration in the 21st century in the conditions of Arctic amplification. Satellite scenes and topographic map sheets were used for the study and were analyzed by means of remote sensing and GIS methods. The study covered 2000–2014 years and concluded that surface recession accelerated on average by a factor of 2.75 compared to the 1936–2000 period, while linear recession was 2.2 times faster. The greatest increase in the deglaciation rate can be observed in the case of glaciers faced to N and W sectors. The deglaciation process is the most advanced in the central part of the island, where small, compact mountain glaciers predominate. In recent years, a slowdown in the deglaciation processes in these glaciers was observed. The studies demonstrate that the deglaciation rate was mainly influenced by the basin relief determining the glacier geometry. The resultant fractal nature of the ice cover makes it highly vulnerable to the disintegration of complex glacial systems into smaller ones due to glacier thinning and the separation of outlets. The acceleration of the deglaciation rate in turn is modified by the climate factor, especially the impact of warming air masses from the N and W sectors where seas are becoming increasingly ice-free and, consequently, have an increasing heat capacity.
Przejdź do artykułu

Abstrakt

Geomorphological research based on geomorphological mapping seeks to identify the origins and age of forms as well as to describe the process that created or transformed a particular form. One of the most important aspects of this study is the morphometry and morphology of the landscape. This also applies to the submarine areas, and issues related to marine geomorphometry. Bathymetric data used in this study were obtained from the measurements of the Norwegian Hydrographic Service and measurements conducted by the authors. Its main goal was: to determine the bathymetry of the Recherchefjorden (Bellsund, Svalbard), establish morphometric parameters for the analysis of the morphology of the bottom. The boundaries of zones, related to the specific character of bottom geomorphology linked with geological structure, tectonics and, in particular, the impact of glacial system, was delineated. The sets of landforms (areas) were distinguished based on the morphometric analysis resulting from the determined parameters: slopes, its aspects, curvatures and Bathymetric Position Index. Basically, this areas are concentrated in two zones: the main Recherchefjorden and its surroundings. The delimitation also takes into account the origins and location of theme in relation to the glacial systems. On this basis, moraine areas were distinguished. They are linked with the Holocene advances of two glaciers, Renardbeen and Recherchebreen, mainly during the Little Ice Age. They constitute boundary zones between areas with different morphometric parameters: outer fjord and inner fjord. Moreover, taking into account geology and terrestrial geomorphology it was possible to describe paraglacial processes in this area.
Przejdź do artykułu

Abstrakt

In this study, atlases of wave characteristics and wave energy for the Barents Sea have been generated for the years from 1996 to 2015 based on ERA-Interim datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF). The wave power resources in the Barents Sea can be exploited with sea ice extent declining in recent years. The entire Barents Sea has been divided into multi-year sea ice zones, seasonal sea ice zones and open water zones according to the 20-year averaged sea ice concentration. In the entire domain, the spatial distributions of the annual averaged and mean monthly significant wave heights and wave energy flux are presented. For the open water zones, 15 points have been selected at different locations so as to derive and study the wave energy roses and the inter-annual wave power variation. Moreover, the correlations between the wave energy period and the significant wave height are shown in the energy and scatter diagrams. The maximum wave power occurs in the winter in the western parts of the Barents Sea with more than 60kW/m. The wave energy can therefore be exploited in the open water zones.
Przejdź do artykułu

Redakcja

Editors-in-Chief

Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland
e-mail: wmaj@twarda.pan.pl

Associate Editors
Krzysztof HRYNIEWICZ (Warszawa),
e-mail:krzyszth@twarda.pan.pl
Piotr JADWISZCZAK (Białystok),
e-mail: piotrj@uwb.edu.pl
Piotr Pabis (Łódź),
e-mail: cataclysta@wp.pl
Krzysztof Jażdżewski (Łódź),
e-mail: krzysztof.jazdzewski@biol.uni.lodz.pl

Editorial Advisory Board
Krzysztof BIRKENMAJER (Kraków),
Angelika BRANDT (Hamburg),
Claude DE BROYER (Bruxelles),
Peter CONVEY (Cambridge, UK),
J. Alistair CRAME (Cambridge, UK),
Rodney M. FELDMANN (Kent, OH),
Jane E. FRANCIS (Cambridge, UK),
Marek GRAD (Warszawa),
Aleksander GUTERCH (Warszawa),
Jacek JANIA (Sosnowiec),
Jiří KOMÁREK (Třeboň),
Wiesława KRAWCZYK (Sosnowiec),
German L. LEITCHENKOV (Sankt Petersburg),
Jerónimo LÓPEZ-MARTINEZ (Madrid),
Sergio A. MARENSSI (Buenos Aires),
Jerzy NAWROCKI (Warszawa),
Ryszard OCHYRA (Kraków),
Maria OLECH (Kraków) - President,
Sandra PASSCHIER (Montclair, NJ),
Jan PAWŁOWSKI (Genève),
Gerhard SCHMIEDL (Hamburg),
Jacek SICIŃSKI (Łódź),
Michael STODDART (Hobart),
Witold SZCZUCIŃSKI (Poznań),
Andrzej TATUR (Warszawa),
Wim VADER (Tromsø),
Tony R. WALKER (Halifax, Nova Scotia),
Jan Marcin WĘSŁAWSKI (Sopot)

Technical Editors
Dom Wydawniczy ELIPSA, ul. Inflancka 15/198, 00-189 Warszawa, tel./fax 22 635 03 01, 22 635 17 85

 

Kontakt

Geosciences
Wojciech MAJEWSKI
e-mail: wmaj@twarda.pan.pl
phone: (48 22) 697 88 53

Instytut Paleobiologii
Polska Akademia Nauk
ul. Twarda 51/55
00-818 Warszawa, POLAND

Life Sciences
Magdalena BŁAŻEWICZ
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul. S. Banacha 12/16
90-237 Łódź, POLAND

Instrukcje dla autorów

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers, dealing with all aspects of polar research. The journal aims to provide a forum for publication of high quality research papers, which are of international interest.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should be not longer than 30 typescript pages, including tables, figures and references. All papers are peer-reviewed. With the submitted manuscript authors should provide the names, addresses and e-mail addresses of three suggested reviewers.

Submission of an article implies that the work described has not been published previously nor is under consideration by another journal.

The contribution should be submitted as Word file. It should be prepared in single-column double-spaced format and 25 mm margins. Consult a recent issue of the journal for layout and conventions (http://www.versita.com/ppr). Prepare figures and tables as separate files. For computer-generated graphics, editor Corel Draw is preferred. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126 × 196 mm. The cost of color reproduction in print is EUR 80 per page, or equivalent in any convertible curency. Color artwork in PDF is free of charge.

Title should be concise and informative, no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa. Responsibility for the accuracy of bibliographic citations lies entirely with the authors. References in the text to papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.

 

Examples:
ANDERSON J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge: 289 pp.
BIRKENMAJER K. 1991. Tertiary glaciation in the South Shetland Islands, West Antarctica: evaluation of data. In: M.R.A. Thomson, J.A. Crame and J.W. Thomson (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge: 629–632.
DINGLE S.A., MARENSSI S.A. and LAVELLE M. 1998. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. Journal of South American Earth Sciences 11: 571–579.
SEDOV R.V. 1997. Glaciers of the Chukotka. Materialy Glyatsiologicheskikh Issledovaniy 82: 213–217 (in Russian).
SOBOTA I. and GRZEŚ M. 2006. Characteristic of snow cover on Kaffi oyra’s glaciers, NW Spitsbergen in 2005. Problemy Klimatologii Polarnej 16: 147–159 (in Polish).

 

The journal does not have article processing charges (APCs) nor article submission charges.

 

Twenty-five reprints of each article published are supplied free of charge. Additional charged reprints can be ordered.

 

Please submit your manuscripts to Polish Polar Research via email to Editors-in-Chief:

Magdalena BŁAŻEWICZ (Life Sciences) magdalena.blazewicz@biol.uni.lodz.pl

Wojciech MAJEWSKI (Geosciences) wmaj@twarda.pan.pl

 

Abstracting & Indexing

Polish Pola r Research is covered by the following services:

    AGRICOLA (National Agricultural Library)

    AGRO

    Arianta

    Baidu Scholar

    Cabell's Directory

    CABI (over 50 subsections)

    Celdes

    CNKI Scholar (China National Knowledge Infrastructure)

    CNPIEC

    Cold Regions Bibliography

    Current Antarctic Literature

    DOAJ (Directory of Open Access Journals)

    EBSCO (relevant databases)

    EBSCO Discovery Service

    Elsevier - Geobase

    Elsevier - Reaxys

    Elsevier - SCOPUS

    Genamics JournalSeek

    Google Scholar

    J-Gate

    JournalTOCs

    Naviga (Softweco)

    Polish Scientific Journals Contents

    Primo Central (ExLibris)

    ProQuest (relevant databases)

    ReadCube

    ResearchGate

    SCImago (SJR)

    Summon (Serials Solutions/ProQuest)

    TDOne (TDNet)

    Thomson Reuters - Biological Abstracts

    Thomson Reuters - BIOSIS Previews

    Thomson Reuters - Journal Citation Reports/Science Edition

    Thomson Reuters - Science Citation Index Expanded

    Thomson Reuters - Zoological Record

    Ulrich's Periodicals Directory/ulrichsweb

    WorldCat (OCLC)

 

Technical Editors

Dom Wydawniczy ELIPSA, ul. Inflancka 15/198, 00-189 Warszawa, tel./fax 22 635 03 01, 22 635 17 85

 

Contact:

 

Geosciences

Wojciech MAJEWSKI

e-mail: wmaj@twarda.pan.pl

phone: (48 22) 697 88 53

Instytut Paleobiologii

Polska Akademia Nauk

ul. Twarda 51/55

00-818 Warszawa, POLAND

 

Life Sciences

Magdalena BŁAŻEWICZ

e-mail: magdalena.blazewicz@biol.uni.lodz.pl

phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki

ul. S. Banacha 12/16

90-237 Łódź, POLAND

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji