Nauki Techniczne

Geodesy and Cartography


Geodesy and Cartography | 2018 | vol. 67 | No 1 |


Polish spatial data infrastructure dates back 2010, the year when the Spatial Information Infrastructure Act transposing INSPIRE Directive entered into force. The present study provides valuable insight into the current status of Polish spatial data infrastructure (PSDI) as well as lessons learnt from so far efforts in implementing the principles and provisions of the INSPIRE Directive. Particular respect is given to policy, interoperability of data as well as cooperation between actors involved in PSDI establishment and maintenance. Data managed by the Surveyor General (SG), perceived as a backbone of a spatial data infrastructure, are of special importance. Finally, some conclusions and recommendations for further developments are given to foster SDI implementation in Poland. Results of the analysis clearly show that Polish spatial data infrastructure is in line with INSPIRE, and in a half of way being fully operational.
Przejdź do artykułu


Population density varies sharply from place to place on the whole territory of Poland. The largest number of people per 1 km2 is 21,531, while uninhabited areas account for about 48% of the country. Such uneven, non-Gaussian distribution of the data causes some difficulty in choosing the classification method in geometric choropleth maps. A thorough evaluation of a geometric choropleth map of population data is not possible using only traditional indicators such as the Tabular Accuracy Index (TAI). That is why the aim of the article is to develop an innovative index based on distance analysis and neighbour analysis of grid cells. Two indexes have been suggested in this paper: the Spatial Distance Index (SDI) and the Spatial Contiguity Index (SCI). The paper discusses the use of five classification methods to evaluate choropleth maps of population data, like head-tail breaks, natural breaks, equal intervals, quantile, and geometrical intervals. A comprehensive assessment of such geometric choropleth maps is also done. The research was conducted for the whole territory of Poland, using data from the 2011 National Census of Population and Housing. Population data are presented in the 1km grid. The results of the analysis are shown on thematic maps. A compatibility of the choropleth maps with urban-rural typology of the OECD (Organisation for Economic Co-operation and Development) was also checked.
Przejdź do artykułu


The aim of the research was to analyze the possibility of using mobile laser scanning systems to acquire information for production and/or updating of a basic map and to propose a no-reference index of this accuracy assessment. Point clouds have been analyzed in terms of content of interpretation and geometric potential. For this purpose, the accuracy of point clouds with a georeference assigned to the base map objects was examined. In order to conduct reference measurements, a geodetic network was designed and also additional static laser scanning data has been used. The analysis of mobile laser scanning (MLS) data accuracy was conducted with the use of 395 check points. In the paper, application of the total Error of Position of the base-map Objects acquired with the use of MLS was proposed. Research results were related to reference total station measurements. The resulting error values indicate the possibility to use an MLS point cloud in order to accurately determine coordinates for individual objects for the purposes of standard surveying studies, e.g. for updating some elements of the base map content. Nevertheless, acquiring MLS point clouds with satisfying accuracy not always is possible, unless specific resolution condition is fulfilled. The paper presents results of accuracy evaluation in different classes of base-map elements and objects.
Przejdź do artykułu


Generally, gross errors exist in observations, and they affect the accuracy of results. We review methods to detect the gross errors by Robust estimation method based on L1-estimation theory and their validity in adjustment of geodetic networks with different condition. In order to detect the gross errors, we transform the weight of accidental model into equivalent one using not standardized residual but residual of observation, and apply this method to adjustment computation of triangulation network, traverse network, satellite geodetic network and so on. In triangulation network, we use a method of transforming into equivalent weight by residual and detect gross error in parameter adjustment without and with condition. The result from proposed method is compared with the one from using standardized residual as equivalent weight. In traverse network, we decide the weight by Helmert variance component estimation, and then detect gross errors and compare by the same way with triangulation network In satellite geodetic network in which observations are correlated, we detect gross errors transforming into equivalent correlation matrix by residual and variance inflation factor and the result is also compared with the result from using standardized residual. The results of detection are shown that it is more convenient and effective to detect gross errors by residual in geodetic network adjustment of various forms than detection by standardized residual.
Przejdź do artykułu


In this article, the classification of underground space types is analyzed. It is established that there are objects that are taxed in the tax code of Ukraine and there are those that are not taxed. The results of the research are justified by the lack of mechanisms and technical solutions of three-dimensional objects of commercial space taxation, which have been intensively developing in Ukraine. The ways of solving legal conflicts regarding registration and taxation of real estate objects are suggested. Based on the study of the legislative base and normative legal documents in the sphere of land relations, a classifier of three-dimensional space objects, which today are fully or partially used for commercial purposes in various types of economic activity has been proposed. The analysis of the regulatory and legal framework regarding the taxation of underground space facilities has been carried out. Objects for which the taxation of land is charged and those objects for which there is no charge for the use of underground space have been identified. A methodology for the justified calculation of a decreasing percentage ratio for calculating a normative monetary evaluation (NME) is developed for the cases where the object of an underground commercial space is located at a distance from the center in one of the proposed zones.
Przejdź do artykułu


Activities related to parking of transport, today have become widespread. While parking taxes for vehicles are one of the most important sources of local budgets in countries with established traditions of local government. The tax for parking spaces for vehicles is a relatively new collection in the tax system of Ukraine, which is due to the recent reform in tax legislation. Therefore, the scientific coverage of this subject is currently insufficiently investigated. In the article typical permissive documents are considered when decorating parking lots, and dependence that contradicts the current land legislation affects local revenues to the budget is established. The discrepancy between the general approaches of payment for land is established. For comparison, the approach of parking taxation, for which there is no land management documentation, and the main reason is the permission from the public enterprise for the maintenance of green spaces is considered. The analysis of the current state of the transport scheme of the city shows that in conditions of growth of elaborate road schemes and with insufficient rates of increase in its capacity to contain traffic growth it is advisable to increase the carrying capacity of transport lines and the development of mass passenger transport in cities with a planned increase in average capacity of rolling stock. Also, using traffic management is necessary to ensure that special conditions for the passage of the public transport network.
Przejdź do artykułu


Land use/land cover (LULC) maps are important datasets in various environmental projects. Our aim was to demonstrate how GEOBIA framework can be used for integrating different data sources and classification methods in context of LULC mapping.We presented multi-stage semi-automated GEOBIA classification workflow created for LULC mapping of Tuszyma Forestry Management area based on multi-source, multi-temporal and multi-resolution input data, such as 4 bands- aerial orthophoto, LiDAR-derived nDSM, Sentinel-2 multispectral satellite images and ancillary vector data. Various classification methods were applied, i.e. rule-based and Random Forest supervised classification. This approach allowed us to focus on classification of each class ‘individually’ by taking advantage from all useful information from various input data, expert knowledge, and advanced machine-learning tools. In the first step, twelve classes were assigned in two-steps rule-based classification approach either vector-based, ortho- and vector-based or orthoand Lidar-based. Then, supervised classification was performed with use of Random Forest algorithm. Three agriculture-related LULC classes with vegetation alternating conditions were assigned based on aerial orthophoto and Sentinel-2 information. For classification of 15 LULC classes we obtained 81.3% overall accuracy and kappa coefficient of 0.78. The visual evaluation and class coverage comparison showed that the generated LULC layer differs from the existing land cover maps especially in relative cover of agriculture-related classes. Generally, the created map can be considered as superior to the existing data in terms of the level of details and correspondence to actual environmental and vegetation conditions that can be observed in RS images.
Przejdź do artykułu


Technical development, new applications and requests for increased accuracy in georeferencing are setting new demands for accuracy and reliability of reference frames. Due to crustal deformations and local movements of benchmarks, a static reference network deteriorates with time, thus eventually requiring update of the whole system. Technically, renewal of a reference frame is straightforward and should be done whenever enough new data or updated information exist to get an improvement in accuracy. An example is the International Terrestrial Reference Frame, ITRF, which is renewed regularly. The situation is more complicated with national reference frames which may have been given a legal status, and parameters defined by the national legislation. Even without that, renewal and implementation of such a frame is a multi-million euro project taking years to complete. Crustal deformations and movements deteriorate static reference frames (defined by fixed/static coordinates of benchmarks) with time. Eventually, distortions in a static reference frame will become bigger than the uncertainties of GNSS measurements, thus deteriorating the obtainable accuracy of the measurement technique. Instead of a static reference frame, one can use semi-kinematic or kinematic approach where either the transformation from global to the national reference frame or the coordinates of reference frame benchmarks are time-dependent. In this paper we give a short overview of the topic, and discuss on technical issues and future aspects of the reference frames in the viewpoint of National Mapping and Cadastre Authorities (NMA) with an example on the national strategy in Finland.
Przejdź do artykułu


The construction of transmission infrastructure and its functioning imposes the obligation on transmission companies to have a legal title to land. Both in Poland and in Canada, the title particularly results from the established easements subject to registration in public information systems. Due to different historical, social, and economic conditions, the specificity of legal regulations and technical solutions related to the registration of rights to land property is different in both countries. This results from the functioning and the substantive scope of particular systems of information on land property. Such systems are regulated by independent, internal rules of each of the countries. In Poland, easement is subject to registration in the land and mortgage register. In Canada, a federation country, it depends on legal regulations of particular provinces. The research objective of the article is the analysis of the way of registration of easements established for transmission companies in Poland and in Canada in the Ontario and Quebec provinces. The analysis covers the scope of registration of the said right in systems of information on land property. The evaluation of the applied solutions particularly involves pointing out those which to the greatest extent guarantee the safety of land property turnover. The best result is obtained in Canada in the Ontario province.
Przejdź do artykułu


This article analyzes the technology of creating and updating a digital topographic map using the method of mapping (generalization) on an updated map with a scale of 1 : 25;000 based on the source cartographic material. The main issue in the creation of digital maps is the study of map production accuracy and error analysis arising from the process of map production. When determining the quality of a digital map, the completeness and accuracy of object and terrain mapping are evaluated. The correctness of object identification, the logical consistency of the structure, the and representation of objects are assessed. The main and the most effective method, allowing to take into account displacement errors for the relief during image processing, is orthotransformation, but the fragment used to update the digital topographic map needs additional verification of its compliance with the scale requirements of the map. Instrumental survey will help to clearly identify areas of space image closer to nadir points and to reject poor quality material. The software used for building geodetic control network should provide stable results of accuracy regardless on the scale of mapping, the physical and geographical conditions of the work area or the conditions of aerial photography.
Przejdź do artykułu


Elżbieta Bielecka, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland

Editorial Advisory Board
Aleksandra Bujakiewicz, Warsaw University of Technology, Poland
Beata Medynska-Gulij, Adam Mickiewicz University (UAM), Poland
Edward Osada, University of Lower Silesia, Poland
Jan Krynski, Institute of Geodesy and Cartography (IGiK), Poland
Jerzy Rogowski, Warsaw University of Technology, Poland
Zbigniew Wisniewski, University of Warmia and Mazury in Olsztyn (UWM), Poland
Josef Adam, University of Technology and Economics, Hungary
Adam Chrzanowski, University of New Brunswick, Canada
Dorota Grejner-Brzezińska, The Ohio State University, USA
Jaakko Makinen, Finnish Geodetic Institute, Finland
Helmut Moritz, Graz University of Technology, Austria
Heinz Ruther, University of Cape Town, RSA
Michael Sideris, University of Calgary, Canada
Gabriel Strykowski, Technical University of Denmark, Denmark
Jaroslaw S. Yatskiv, Main Astronomical Observatory, Ukraine

Pawel Kamiński, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland

Technical Editors
Karolina Krawczyk, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland
Krzysztof Bielecki, Military University of Technology, Faculty of Civil Engineering and Geodesy (WAT WIG), Poland



Elżbieta Bielecka

Instrukcje dla autorów

GEODESY AND CARTOGRAPHY is a semiannually journal publishing peer-reviewed articles with original solutions of theoretical, experimental or applicable problems in the field of geodesy, surveying engineering, cartography, photogrammetry and related disciplines. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops.
Legal requirements
The author(s) guarantee(s) that the manuscript will not be published elsewhere in any language without the consent of the copyright owners, that the rights of the third parties will not be violated, and that the publisher will not held legally responsible should there be any claims for compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Manuscript submission
Submission of the manuscript implies: that the work has not been published before (except in form of an abstract or as a part of a published lecture, review or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institution where the work was carried out.
Articles should be submitted on line
In case the manuscript has more than one author its submission should include the list specifying contribution of each author to the manuscript with indicating who is the author of the concept, assumptions, research methodology, data processing. Major responsibility is of the author submitting the manuscript.
The Editor will counteract in GEODESY AND CARTOGRAPHY against Ghostwriting, i.e. when someone substantially contributed to the preparation of the manuscript but has neither been included to the list of authors nor his role is mentioned in the acknowledgements as well as Ghost authorship, i.e. when the author/co-author did not contribute to the manuscript or his contribution is negligible. Any detected case of Ghostwriting and Ghost authorship will be exposed and the appropriate subjects, i.e. employers, scientific organisations, associations of editors etc, will be informed.
Electronic submission of a manuscript
Use the template to format your paper.

Layout guidelines:- use a normal, plain Times Roman font for text, italics for textual emphasis, bold for mathematical vectors,
- use the table functions of your word processing program, not spreadsheets, to make tables,
- use the equation editor of your word processing program for equations,
- place all figures with figure legends and tables with table legends in the manuscript,
- submit also all figures as separate files.
Data format:
Save your manuscript in RTF or DOC Microsoft Word for Windows format.
Figures should be provided in the vector graphics or JPG or TIF (specifically for halftone illustrations) formats will be accepted. The filename should include the figure number. Figure legends should be included in the text and not in the figure file. Scanned line drawings should be digitised with a minimum resolution of 800 dpi relative to the final figure size. For digital halftones, 300 dpi is usually sufficient. Non-standard fonts used in the vector graphics must be included. Please do not draw with hairlines. The minimum line width is 0.2 mm (0.567 pt) relative to the final size.
Manuscript preparation
Manuscripts should be typed in single-line spacing throughout on the A4 sheet with 2.5 cm margins .
1. Title page:
- a concise and informative title
- the name(s) of the author(s)
- the name(s) and address(es) of the affiliation(s) of the author(s)
- the e-mail address, telephone and fax numbers of the communicating author
2. Abstract: the paper must be preceded by a sufficiently informative abstract presenting the most important results and conclusions.
3. Keywords: three to five keywords should be supplied.
4. Introduction: should state the purpose of the investigation and give a short review of the pertinent literature.
5. Main text: including method and input data (working details must be given concisely; well-known operations should not be described in detail); results presented in tabular or graph form, with appropriate statistical evaluation, discussion of results - statement of conclusions drawn from the work, conclusions.
6. Acknowledgements: should be brief and consist of grant or individuals that require acknowledgement.
The names of funding organizations or institutions providing data should be given in full.
7. References: the list of references should be in alphabetical order and should only include works that are cited in the text and that have been published or accepted for publication. Personal communications could only be mentioned in the text. References should consist of the complete list of authors and should be given in the following form:
In the text, references should be cited by author(s) last name and year: e.g. (Beutler, 2003a), (Featherstone and Kirby, 2000), (Schwarz et al., 1990), (Sjöberg et al., 2000; Strykowski, 2001b; 2002).
8. Formulae and symbols: must be written legibly and will be typeset in italics. One-layer indexing is preferable. Numbering of formulae, if necessary should be given in brackets fitted to the right margin.
9. Footnotes: to the text should be numbered consecutively and placed on the bottom of the page to which they refer. Footnotes to the tables should be indicated by superscript lowercase letters.
10. Illustrations and tables: all figures (photographs, graphs or diagrams) and tables should be cited in the text and each numbered consecutively throughout. Lowercase roman letters should identify figure parts. Figure legends must be brief and must contain self-sufficient explanations of the illustrations. Each table should have a title and a legend explaining any abbreviation used in that table.
11. Units: SI units must be used.
12. Running head: consisting of at most 60 characters a concise banner representing the title of the article must be submitted by the author(s).
Proofreading is the responsibility of the author. Corrections should be clear; standard correction marks should be used. Corrections that lead to a change in the page layout should be avoided. The author is entitled to formal corrections only. Substantial changes in content, e.g. new results, corrected values, title and authorship are not allowed without the approval of the editor. In such case please contact the Editor-in-chief before returning the proofs.
References formatting
a. Journal Article (one author)
Nikora, V. (2006). Hydrodynamics of aquatic ecosystems: spatial-averaging perspective. Acta Geophysica, 55(1), 3-10. DOI: 10.2478/s11600-006-0043-6.
b. Journal Article (two or more authors)
Cudak, M. and Karcz J. (2006). Momentum transfer in an agitated vessel with off-centred impellers. Chem. Pap. 60(5), 375-380. DOI: 10.2478/s11696-006-0068-y.
c. Journal article from an online database
Czajgucki Z., Zimecki M. & Andruszkiewicz R. (2006, December). The immunoregulatory effects of edeine analogues in mice [Abstract]. Cell. Mol. Biol. Lett. 12(3), 149-161. Retrieved December 6.
d. Book (one author)
Baxter, R. (1982). Exactly Solvable Models in Statistical Mechanics. New York: Academic Press.
e. Book (two or more authors)
Kleiner, F.S., Mamiya C.J. and Tansey R.G. (2001). Gardner’s art through the ages (11th ed.). Fort Worth, USA: Harcourt College Publishers.
f. Book chapter or article in an edited book
Roll, W.P. (1976). ESP and memory. In J.M.O. Wheatley and H.L. Edge (Eds.), Philosophical dimensions of parapsychology (pp. 154-184). Springfield, IL: American Psychiatric Press.
g. Proceedings from a conference
Field, G. (2001). Rethinking reference rethought. In Revelling in Reference: Reference and Information Services Section Symposium, 12-14 October 2001 (pp. 59-64). Melbourne, Victoria, Australia: Australian Library and Information Association.
h. ebook
Johnson, A. (2000). Abstract Computing Machines. Springer Berlin Heidelberg. Retrieved March 30, 2006, from SpringerLink DOI: 10.1007/b138965.
i. Report
Osgood, D. W., and Wilson, J. K. (1990). Covariation of adolescent health problems. Lincoln: University of Nebraska. (NTIS No. PB 91-154 377/AS).
j. Government publication
Ministerial Council on Drug Strategy. (1997). The national drug strategy: Mapping the future. Canberra: Australian Government Publishing Service.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji