Applied sciences

Archives of Foundry Engineering

Content

Archives of Foundry Engineering | 2012 | No 4 |

Abstract

The paper presents the results of evaluation of the metallurgical quality of master heat ingots and of the identification of non-metallic inclusions (oxides of Al., Zr, Hf, Cr, etc.), which have been found in the shrinkage cavities formed in these ingots. The inclusions penetrate into the liquid alloy, and on pouring of mould are transferred to the casting, especially when the filtering system is not sufficiently effective. The specific nature of the melting process of nickel and cobalt alloys, carried out in vacuum induction furnaces, excludes the possibility of alloy refining and slag removal from the melt surface. Therefore, to improve the quality of castings (parts of aircraft engines), it is so important to evaluate the quality of ingots before charging them into the crucible of an induction furnace. It has been proved that one of the methods for rapid quality evaluation is an ATD analysis of the sample solidification process, where samples are taken from different areas of the master heat ingot. The evaluation is based on a set of parameters plotted on the graph of the dT/dt derivative curve during the last stage of the solidification process in a range from TEut to Tsol.
Go to article

Abstract

The mathematical model of the globular eutectic solidification in 2D was designed. Proposed model is based on the Cellular Automaton Finite Differences (CA-FD) calculation method. Model has been used for studies of the primary austenite and of globular eutectic grains growth during the ductile iron solidification in the thin wall casting. Model takes into account, among other things, non-uniform temperature distribution in the casting wall cross-section, kinetics of the austenite and graphite grains nucleation, and non-equilibrium nature of the interphase boundary migration. Calculation of eutectic saturation influence (Sc = 0.9 - 1.1) on microstructure (austenite and graphite fraction, density of austenite and graphite grains) and temperature curves in 2 mm wall ductile iron casting has been done.
Go to article

Abstract

Impact of surface and volume modification and double filtration during pouring the moulds on basic mechanical properties and creep resistance of nickel superalloys IN-713C and MAR-247 in conditions of accelerated creep of castings made of post-production scrap of these alloys is evaluated in this paper. The conditions of initiation and propagation of cracks in the specimens were analysed with consideration of stereological properties of material macro- and microstructure. It has been proven that in the conditions of hightemperature creep at 980°C and at stress σ = 150 MPa, creep resistance of superalloy MAR-247 is more than 10 times higher than the creep resistance of IN-713C alloy. In case of IN-713C alloy, the creep resistance negligibly depends on macrograin sizes. But, the macrograin size considerably affects the time to failure of specimens made of alloy MAR-247. Creep resistance of specimens made of coarse grain material was 20% higher than the resistance of fine grain materials.
Go to article

Abstract

Theoretical problems concerning the determination of work parameters of the two-phase sand-air stream in the cores making process by blowing methods as well as experimental methods of determination of the main and auxiliary parameters of this process decisive on the cores quality assessed by the value and distribution of their apparent density are presented in the paper. In addition the results of visualisations of the core-box filling with the sand-air stream, from the blowing chamber, obtained by the process filming by means of the quick-action camera are presented in the paper and compared with the results of simulation calculations with the application of the ProCast software.
Go to article

Abstract

Creep-resistant parts of heat treatment furnaces are in most cases made from high-alloyed chromium-nickel and nickel-chromium iron alloys, both cast and wrought. This paper presents the types of casting alloys used for this particular purpose, since the majority of furnace components are made by the casting process. Standards were cited which give symbols of alloy grades used in technical specifications by the domestic industry. It has been indicated that castings made currently are based on a wider spectrum of the creep-resistant alloy grades than the number of alloys covered by the standards. Alloy grades recommended by the technical literature for individual parts of the furnace equipment were given. The recommendations reflect both the type of the technological process used and the technical tasks performed by individual parts of the furnace equipment. Comments were also made on the role of individual alloying elements in shaping the performance properties of castings.
Go to article

Abstract

The paper presents a solidification sequence of graphite eutectic cells of A and D types, as well as globular and cementite eutectics. The morphology of eutectic cells in cast iron, the equations for their growth and the distances between the graphite precipitations in A and D eutectic types were analyzed. It is observed a critical eutectic growth rate at which one type of eutectic transformed into another. A mathematical formula was derived that combined the maximum degree of undercooling, the cooling rate of cast iron, eutectic cell count and the eutectic growth rate. One type of eutectic structure turned smoothly into the other at a particular transition rate, transformation temperature and transformational eutectic cell count. Inoculation of cast iron increased the number of eutectic cells with flake graphite and the graphite nodule count in ductile iron, while reducing the undercooling. An increase in intensity of inoculation caused a smooth transition from a cementite eutectic structure to a mixture of cementite and D type eutectic structure, then to a mixture of D and A types of eutectics up to the presence of only the A type of eutectic structure. Moreover, the mechanism of inoculation of cast iron was studied.
Go to article

Abstract

This paper presents the results of Cr - Ni 18/9 austenitic cast steel modifications by mischmetal. The study was conducted on industrial melts. Cast steel was melted in an electric induction furnace with a capacity of 2000 kg and a basic lining crucible. .The mischmetal was introduced into the ladle during tapping of the cast steel from the furnace. The effectiveness of modification was examined with the carbon content of 0.1% and the presence of δ ferrite in the structure of cast steel stabilized with titanium. The changes in the structure of cast steel and their effect on mechanical properties and intergranular corrosion were studied. It was found that rare earth metals decrease the sulfur content in cast steel and above all, they cause a distinct change in morphology of the δ ferrite and non-metallic inclusions. These changes have improved mechanical properties. R02, Rm, and A5 and toughness increased significantly. There was a great increase of the resistance to intergranular corrosion in the Huey test. The study confirmed the high efficiency of cast steel modification by mischmetal in industrial environments. The final effect of modification depends on the form and manner of placing mischmetal into the liquid metal and the melting technology, ie the degree of deoxidation and desulfurization of the metal in the furnace.
Go to article

Abstract

The results of studies on the use of modern two cored wires injection method for production of ferritic nodular cast iron (ductile iron) with use of unique implementation of drum ladle as a treatment / transport and casting ladle instead vertical treatment ladle was described. The injection of length of Ø 9mm wires, cored: in FeSi + Mg nodulariser mixture and inoculant master alloy is a treatment method which can be used to produce iron melted in coreless induction furnace. This paper describes the results and analysis of using this method for optimal production of ductile iron under specific industrial conditions. It means, that length of nodulariser wire plus treatment and pouring temperatures were optimized. In this case, was taken ductile iron with material designation: EN-GJS-SiMo40-6 Grade according EN 16124:2010 E. Microstructure of great number of trials was controlled on internally used sample which has been correlated with standard sample before. The paper presents typical ferritic metallic matrix and nodular graphite. Additionally, mechanical properties were checked in some experiments. Mean values of magnesium recovery and cost of this new method from optimized process parameters were calculated as well.
Go to article

Abstract

During design of the casting products technology, an important issue is a possibility of prediction of mechanical properties resulting from the course of the casting solidification process. Frequently there is a need for relations describing mechanical properties of silumin alloys as a function of phase refinement in a structure and a porosity fraction, and relations describing phase refinement in the structure and the porosity fraction as a function of solidification conditions. The study was conducted on castings of a 22 mm thick plate, made of EN AC-AlSi7Mg0,3 alloy in moulds: of quartz sand, of quartz sand with chill and in permanent moulds. On the basis of cooling curves, values of cooling rate in various casting parts were calculated. The paper also presents results of examination of distance between arms in dendrites of a solid solution α (DASL), precipitations length of silicon in an eutectic (DlSi) and gas-shrinkage porosity (Por) as a function of cooling rate. Statistical relations of DASL, DlSi, Por as a function of cooling rate and statistical multiparameter dependencies describing mechanical properties (tensile strength, yield strength, elongation) of alloy as a function of DASL, DlSi and Por are also presented in the paper.
Go to article

Abstract

The paper presents an analysis of SPC (Statistical Process Control) procedures usability in foundry engineering. The authors pay particular attention to the processes complexity and necessity of correct preparation of data acquisition procedures. Integration of SPC systems with existing IT solutions in area of aiding and assistance during the manufacturing process is important. For each particular foundry, methodology of selective SPC application needs to prepare for supervision and control of stability of manufacturing conditions, regarding specificity of data in particular “branches” of foundry production (Sands, Pouring, Metallurgy, Quality).
Go to article

Abstract

Artificial neural networks are one of the modern methods of the production optimisation. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is the assessment method of sands suitability by means of detecting correlations between their individual parameters. The presented investigations were aimed at the selection of the neural network able to predict the active bentonite content in the moulding sand on the basis of this sand properties such as: permeability, compactibility and the compressive strength. Then, the data of selected parameters of new moulding sand were set to selected artificial neural network models. This was made to test the universality of the model in relation to other moulding sands. An application of the Statistica program allowed to select automatically the type of network proper for the representation of dependencies occurring in between the proposed moulding sand parameters. The most advantageous conditions were obtained for the uni-directional multi-layer perception (MLP) network. Knowledge of the neural network sensitivity to individual moulding sand parameters, allowed to eliminate not essential ones.
Go to article

Abstract

The results of studies of W-Ni-Co-Fe experimental alloy, with chemical composition assuring a possibility of producing Ni-based supersaturated solid solution are presented. The alloy was prepared from tungsten, nickel, cobalt and iron powders which were first mixed then melted in a ceramic crucible where they slowly solidified in hydrogen atmosphere. Next specimens were cut from the casting and heated at a temperature 950o C. After solution treatment the specimens were water quenched and then aged for 20 h at a temperature 300o C. The specimens were subjected to microhardness measurements and structure investigations. The latter included both conventional metallography and SEM observations. Moreover, for some specimens X-ray diffractometry studies and TEM investigations were conducted. It was concluded that quenching lead to an increase of tungsten concentration in nickel matrix which was confirmed by Ni lattice parameter increase. Aging of supersaturated solid solution caused strengthening of the Ni-based matrix, which was proved by hardness measurements. The TEM observation did not yield explicit proofs that the precipitation process could be responsible for strengthening of the alloy.
Go to article

Abstract

An influence of a decreased Cr content on the microstructure of the highly alloyed Cr-Ni cast steel, duplex type, melted under laboratory conditions, was characterized in the paper. The microstructure investigations were performed in the initial state and after the heat treatment (solution annealing) at 1060°C as well as the phase transformation kinetics at continuous cooling was measured. The wear resistance of the investigated cast steel was tested and compared with the 24%Cr-5%Ni-2.5%Mo cast steel. The Cr content decrease, in ferritic-austenitic cast steels (duplex), from 24-26%Cr to 18% leads to the changes of the castings microstructure and eliminating of a brittle σ phase. In dependence of the casting cooling rate, apart from ferrite and austenite, also fine martensite precipitates occur in the casting structure. It was shown that the investigated cast steel is characterised by a slightly lower wear resistance than the typical cast steel duplex grades.
Go to article

Abstract

This paper presents influence of rare earth metals (REM) on the properties of GP240GH cast carbon steel. The research has been performed on successive industrial melts. Each time ca 2000 kg of liquid metal was modified. The rare earth metals were put into the ladle during tapping of heat melt from the furnace. Because of this the amount of sulphur in the cast steel was decreased and the non-metallic inclusion morphology was significantly changed. It was found that non metallic inclusions the cracking mechanism of Charpy specimens and the impact strength were all changed. The following properties were tested: mechanical properties (σy, σUTS), plastic properties (necking, elongation) and impact strength (SCI). In the three-point bend test the KJC stress intensity factor was evaluated.
Go to article

Abstract

The paper presents the results of tests on the spheroidising treatment of vanadium carbides VC done with magnesium master alloy and mischmetal. It has been proved that the introduction of magnesium master alloy to an Fe-C-V system of eutectic composition made 34% of carbides crystallise in the form of spheroids. Adding mischmetal to the base alloy melt caused 28% of the vanadium carbides crystallise as dendrites. In base alloy without the microstructure-modifying additives, vanadium carbides crystallised in the form of a branched fibrous eutectic skeleton. Testing of mechanical properties has proved that the spheroidising treatment of VC carbides in high-vanadium cast iron increases the tensile strength by about 60% and elongation 14 - 21 times, depending on the type of the spheroidising agent used. Tribological studies have shown that high-vanadium cast iron with eutectic, dendritic and spheroidal carbides has the abrasive wear resistance more than twice as high as the abrasion-resistant cast steel.

Go to article

Abstract

The growth kinetics of the zinc coating formed on the surface of casting made from ductile iron grade EN-GJS-500-3 was investigated. To produce homogenous metal matrix in test samples, the normalising and ferritising annealing was carried out. Studies showed a heterogeneous structure of cast iron with varying content of the phases formed. This was followed by hot dip galvanising treatment at 450°C to capture the growth kinetics of the zinc coating (the time of the treatment ranged from 60 to 600 seconds). Nonlinear estimation of the determined growth kinetics of the alloyed layer of a zinc coating was made and an equation of the zinc coating growth was derived. Based on the results of the investigations it was concluded that thickness of the zinc coating formed on the surface of casting with a 100% pearlitic matrix makes 55% of the thickness of coating formed on the surface in 100% ferritic.

Go to article

Abstract

Thin metal film subjected to a short-pulse laser heating is considered. The parabolic two-temperature model describing the temporal and spatial evolution of the lattice and electrons temperatures is discussed and the melting process of thin layer is taken into account. At the stage of numerical computations the finite difference method is used. In the final part of the paper the examples of computations are shown.

Go to article

Abstract

AM50/Mg2Si composites containing 5.7 wt. % and 9.9 wt. %. of Mg2Si reinforcing phase were prepared successfully by casting method. The microstructure of the cast AM50/Mg2Si magnesium matrix composites was investigated by light microscopy and X-ray diffractometry (XRD). The microstructure of these composites was characterized by the presence of α-phase (a solid solution of aluminium in magnesium), Mg17Al12 (γ-phase), Al8Mn5 and Mg2Si. It was demonstrated that the Mg2Si phase was formed mainly as primary dendrites and eutectic.

Go to article

Abstract

Mathematical description of alloys solidification in a macro scale can be formulated using the one domain method (fixed domain approach). The energy equation corresponding to this model contains the parameter called a substitute thermal capacity (STC). The analytical form of STC results from the assumption concerning the course of the function fS = fS (T) describing the changes of solid state volumetric fraction and the temperature at the point considered. Between border temperatures TS , TL the function fS changes from 1 to 0. In this paper the volumetric fraction fS (more precisely fL = 1- fS ) is found using the simple models of macrosegregation (the lever arm rule, the Scheil model). In this way one obtains the formulas determining the course of STC resulting from the certain physical considerations and this approach seems to be closer to the real course of thermal processes proceeding in domain of solidifying alloy.

Go to article

Abstract

This study presents results of stress rupture test of MAR-M-509 cobalt alloy samples, as-cast and after surface refining with a concentrated stream of heat. Tests were conducted on samples of MAR-M-509 alloy castings, obtained using the lost-wax method. Casting structure refining was performed with the GTAW method in argon atmosphere, using the current I = 200 A and electrical arc scanning velocity vs = 100, 150, 200 and 250 mm/min. The effect of rapid resolidification of the MAR-M-509 alloy on the microstructure was examined and significant improvement in stress rupture test was observed.

Go to article

Abstract

This work presents the analysis of the final shaping process of the patterns aimed at determining the influence of the pressure and the time of sintering on the resistance to bending. The analysis of the research results proved that when the pressure of the sintering rises and reaches Ps=2.1 bar the resistance to bending increases, above this level of the pressure the resistance value starts decreasing. The time of styrofoam sintering at which the highest bending resistance values were obtained is ts=90 s. When the sintering pressure is less than 2 bar prolongation of the time of sintering over 90 s causes a slight increase in the resistance, however, at higher pressures prolongation of the time of sintering causes submelting of the styrofoam pattern.

Go to article

Abstract

In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

Go to article

Abstract

In this article the main problems related with the proper choice of the design and operation parameters of vacuum installation in vacuum moulding system have been discussed. In such system a vacuum are generated using electric-driven vacuum pumps. The aim of the experiment is to evaluate the performance of a vacuum system basing on registered plots of selected electric power parameters of the power-supplying system of the pumps with parallel measurements instantaneous values of pressure in selected points of model stand. The measurements system for power-supply unit has incorporated the recorders of instantaneous current and voltage values. Following the suitable numerical procedure, the experimental data are analysed to yield mathematical relationships between the variations of the generated vacuum pressure levels and variations of selected electric power parameters. According to the authors, the applied measurements system of the parameters of a vacuum-assisted installation may become an effective and easy practical method of evaluating the performance of such installations, used also in industry.

Go to article

Abstract

The paper presents results of examination of material parameters of cast iron with structure obtained under rapid resolidification conditions carried out by means of the nanoindentation method.

Go to article

Abstract

The work is a continuation of research on the use of water mist cooling in order to increase efficiency of the die-casting process for aluminum alloys. The paper describes the multipoint sequential cooling system of the casting die and its computer control and monitoring. It also includes results of the tests and analysis of cooling methods during making of the casting. These methods differ from each other in the sequence of casting die cooling and cause effective changes in microstructure and mechanical properties of castings made of AlSi11 alloy. The study demonstrated that the use of multipoint sequential cooling with water mist affects the microstructure refinement and reduces the segregation in the cast as well as more than by 20% increases the mechanical properties of castings in the rough state. The study also demonstrates that the sequential cooling of casting die accelerates the cooling of the casting and shortens die-casting cycle.

Go to article

Abstract

The paper presents a new numerical model of solidification processes in hypoeutectic alloys. The model combines stochastic elements, such as e.g. random nucleation sites and orientation of dendritic grains, as well as deterministic methods e.g. to compute velocity of dendritic tips and eutectic grains. The model can be used to determine the temperature and the size of structure constituents (of both, the primary solid phase and eutectics) and the arrangement of individual dendritic and eutectic grains in the consecutive stages of solidification. Two eutectic transformation modes, typical to modified and unmodified hypoeutectic alloys, have been included in the model. To achieve this, cellular automata and Voronoi diagrams have been utilized.

Go to article

Abstract

The contribution summarises the results of oxygen activity determinations, which were measured and registered continuously in castings from cast irons with various types of graphite. The results were used to find the relationship between two variables: natural logarithm of oxygen activities and reverse value of thermodynamic temperature 1 /T. Obtained regression lines were used to calculate oxygen activity at different temperatures, to calculate Gibbs free energy ΔG at the different temperatures and to calculate the single ΔG value for significant temperature of the graphite solidification. The results were processed by a statistical analysis of data files for the different types of graphite with flake, vermicular and spheroidal graphite. Each material has its proper typical oxygen activities range and individual temperature function of Gibbs free energy for analysing and governing casting quality.

Go to article

Abstract

In sand moulds, at a distance of 3 mm from the metal- mould interface, the sensors of temperature, and of oxygen and hydrogen content were installed. Temperature and the evolution of partial gas pressure have been analysed in moulds bonded with bentonite with or without the addition of seacoal, water glass or furan resin. Moulds were poured with ductile iron. For comparison, also tests with the grey iron have been executed. It was found that the gas atmosphere near the interface depends mainly on the content of a carbonaceous substance in the mould. In the green sand moulds with 5% of seacoal or bonded with furan resin, after the mould filling, a sudden increase in the hydrogen content and the drop of oxygen is observed. This gas evolution results from the oxidation of carbon and reduction of water vapour in the mould material, and also from the reduction of water vapour and alloy reoxidation. In carbon-free sand, the evolution in the gas composition is slower because water vapour is reduced only at the interface. Changes of oxygen and hydrogen content in the controlled zone are determined by the transport phenomena.

Go to article

Abstract

The aim of the paper was an attempt at applying the time-series analysis to the control of the melting process of grey cast iron in production conditions. The production data were collected in one of Polish foundries in the form of spectrometer printouts. The quality of the alloy was controlled by its chemical composition in about 0.5 hour time intervals. The procedure of preparation of the industrial data is presented, including OCR-based method of transformation to the electronic numerical format as well as generation of records related to particular weekdays. The computations for time-series analysis were made using the author’s own software having a wide range of capabilities, including detection of important periodicity in data as well as regression modeling of the residual data, i.e. the values obtained after subtraction of general trend, trend of variability amplitude and the periodical component. The most interesting results of the analysis include: significant 2-measurements periodicity of percentages of all components, significance 7-day periodicity of silicon content measured at the end of a day and the relatively good prediction accuracy obtained without modeling of residual data for various types of expected values. Some practical conclusions have been formulated, related to possible improvements in the melting process control procedures as well as more general tips concerning applications of time-series analysis in foundry production.

Go to article

Abstract

A determination of the heating degree of the moulding sand with bentonite on the grounds of simulating investigations with the application of the MAGMA program, constitutes the contents of the paper. To this end the numerical simulation of the temperature distribution in the virtual casting mould was performed. It was assumed that the mould cavity was filled with a moulding sand with bentonite of a moisture content 3,2 % and bentonite content 8 %. A computer simulation can be used for predicting the heating degree of moulding sands with bentonite. Thus, prediction of the active bentonite (montmorillonite) content in individual layers of the overheated moulding sand can be done by means of the simulation. An overheating degree of a moulding sand with bentonite, and thus the bentonite deactivation depends on a temperature of a casting alloy, casting mass, ratio of: masssand : masscasting, moulding sand amount in the mould and contact area: metal – mould (geometry of the casting shape). Generally it can be stated, that the bentonite deactivation degree depends on two main factors: temperature of moulding sand heating and time of its operation.

Go to article

Editorial office

CHIEF EDITORS
Editor
J. Szajnar
Deputy Editor
J. Jezierski

SUBJECT EDITORS
Theoretical Aspects of Casting Processes
K. Eigenfeld – Freiberg, Germany
E. Guzik – Kraków, Poland
T. G. Mathia - Lyon, France
W. Wołczyński – Kraków, Poland
Innovative Foundry Technologies and Materials
T. Elbel – Ostrava, Czech Republic
Z. Ignaszak – Poznań, Poland
O. P. Pandey – Punjab, India
A. Pereira - Vigo, Spain
Foundry Processes Computer Aiding
B. Mochnacki – Częstochowa, Poland
J. Roučka – Brno, Czech Republic
J.S. Suchy – Kraków, Poland
Mechanization, Automation and Robotics in Foundry
J. Bast – Freiberg, Germany
R. Wrona – Kraków, Poland
Transport Systems in Foundry
J. Dańko – Kraków, Poland
Z. Li – Shijiazhuang, China
Castings Quality Management
D. Bolibruchova– Żilina, Slovak Republic
J. D. B. de Mello - Santa Monica, Brazil
M. Perzyk – Warszawa, Poland
Environment Protection
M. Holtzer – Kraków, Poland
H. Polzin – Freiberg, Germany
J. Sobczak – Kraków, Poland
I. Volchok – Zaporizhzhya, Ukraine

EDITORIAL ADVISORY BOARD
J. Braszczyński – Częstochowa, Poland
B. K. Dhindaw – Rupnagar, India
L. A. Dobrzański – Gliwice, Poland
W. A. Hufenbach – Dresden, Germany
P. Jelínek – Ostrava, Czech Republic
L. Jeziorski – Częstochowa, Poland
J. Lacaze – Toulouse, France
V. L. Naydek – Kiev, Ukraine
A. Passerone – Genova, Italy
I. Riposan – Bucharest, Romania
F. Romankiewicz – Zielona Góra, Poland
A. Sládek – Żilina, Slovak Republic

INTERNATIONAL SCIENTIFIC REVIEW COMMITTEE
S. A. Argyropoulos – Toronto, Canada
M. Azadi – Tehran, Iran
Y. Babaskin – Kiev, Ukraine
K. Bako – Miskolc, Hungary
E. Bayraktar – Paris, France
L. Bechný – Zilina, Slovak Republic
V. Bednarova - Ostrava, Czech Republic
F. Bińczyk – Katowice, Poland
A. Bokota – Częstochowa, Poland
G.P. Borisov – Kiev, Ukraine
A. Bydałek – Kraków, Poland
C. H. Cáceres – Brisbane, Australia
J. Čech – Brno, Czech Republic
L. Q. Chen – Shenyang, China
A. Chojecki – Kraków, Poland
M. Cholewa – Gliwice, Poland
I. A. Dibrov – Moscow, Russia
D. Dispinar – Istanbul, Turkey
S. M. Dobosz – Kraków, Poland
V. I. Dubodelov – Kiev, Ukraine
A. Fedoryszyn – Krakow, Poland
J. Głownia – Kraków, Poland
K. Granat – Wrocław, Poland
J. Hampl – Ostrava, Czech Republic
J. Helber – Düsseldorf, Germany
M. Hetmańczyk – Katowice, Poland
M. Horáček – Brno, Czech Republic
M. Kaczorowski – Warszawa, Poland
W. Kapturkiewicz – Kraków, Poland
R. Kawalla – Freiberg, Germany
Z. Konopka – Czestochowa, Poland
D. Kopyciński – Kraków, Poland
W. K. Krajewski – Kraków, Poland
Z. Libo – Beijing, China
P. Lichy – Ostrava, Czech Republic
Y. P. Lim – Setapak, Malaysia
T. Lipiński – Olsztyn, Poland
E. Majchrzak – Gliwice, Poland
A. Mityayev - Zaporizhzhya, Ukraine
M. Murgaš – Trnava, Slovak Republic
I. Nová – Liberec, Czech Republic
W. Orłowicz – Rzeszów, Poland
T. Pacyniak – Łódź, Poland
B. Piekarski – Szczecin, Poland
A. Rimmer – West Bromwich, United Kingdom
S. Samavedam – Hyderabad, India
P. Schumacher – Leoben, Austria
N. Sczygiol – Częstochowa, Poland
P. Skočovský – Żilina, Slovak Republic
M.S. Soiński – Częstochowa, Poland
J. Sokolowski – Ottawa, Kanada
K. V. Sudhakar – Butte, USA
B. G. Thomas - Champaign, USA
M. Trbižan – Ljubljana, Slovenia
J. Vuorinen – Tampere, Finland
E. Ziółkowski – Kraków, Poland
J. Zych – Kraków, Poland

ASSOCIATE EDITORS
D. Bartocha – Gliwice, Poland, - editorial secretary
J. Suchoń – Gliwice, Poland - editorial secretary
J. Szymszal – Katowice, Poland, Statistic Editor
A. Dulska – Gliwice, Poland
M. Kondracki – Gliwice, Poland
C. Borek –Chicago, USA, Language Editor

 

Contact

ul. Towarowa 7,
44-100 Gliwice, Poland
e-mail: kikm@polsl.pl

Instructions for authors

This page uses 'cookies'. Learn more