Applied sciences

Archives of Thermodynamics

Content

Archives of Thermodynamics | 2014 | No 3 September |

Abstract

Abstract Among the technologies which allow to reduce greenhouse gas emissions, mainly of carbon dioxide, special attention deserves the idea of ‘zero-emission’ technology based on boilers working in oxy-combustion technology. In the paper a thermodynamic analysis of supercritical power plant fed by lignite was made. Power plant consists of: 600 MW steam power unit with live steam parameters of 650 °C/30 MPa and reheated steam parameters of 670 °C/6 MPa; circulating fluidized bed boiler working in oxy-combustion technology; air separation unit and installation of the carbon dioxide compression. Air separation unit is based on high temperature membrane working in three-end technology. Models of steam cycle, circulation fluidized bed boiler, air separation unit and carbon capture installation were made using commercial software. After integration of these models the net electricity generation efficiency as a function of the degree of oxygen recovery in high temperature membrane was analyzed.
Go to article

Abstract

Abstract This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V) correlation. The current-based fuel control (CBFC) was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.
Go to article

Editorial office

Honorary Editor
Wiesław Gogół, Warsaw University of Technology, Poland

Editor-in-Chief
Jarosław Mikielewicz, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

Deputy
Marian Trela, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

Members of Editorial Commitee
Roman Domanski, Warsaw University of Technology, Poland
Andrzej Ziębik, Technical University of Silesia, Poland

Managing Editor
Jarosław Frączak, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

International Advisory Board
J. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University,  Durham, USA
W. Blasiak, Royal Institute of Technology,  Stockholm, Sweden
G. P. Celata, ENEA,  Rome, Italy
M. W. Collins, South Bank University,  London, UK
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
D. Jackson, University of Manchester, UK
S. Michaelides, University of North Texas, Denton, USA
M. Moran, Ohio State University,  Columbus, USA
W. Muschik, Technische Universität, Berlin, Germany
I. Müller, Technische Universität, Berlin, Germany
V. E. Nakoryakov, Institute of Thermophysics, Novosibirsk, Russia
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
M.R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

Contact

IFFM Publishers (Wydawnictwo IMP),

The Szewalski Institute of Fluid-Flow Machinery,
Fiszera 14, 80-952 Gdańsk, Poland,
telephone: +48 58 6995141, fax: +48 58 3416144,
e-mail: jfrk@imp.gda.pl; now@imp.gda.pl

 

 

Instructions for authors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The language of the papers is English. No paper should exceed the length of 25 pages. All pages should be numbered. The plan and form of the papers should be as follows:
 

1. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please show the corresponding author. The heading should be followed by Abstract of maximum 15 typewritten lines.

2. More important symbols used in the paper can be listed in Nomenclature, placed below Summary and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg
etc.
The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should expressed in SI units.

3. The equations should be each in a separate line. The numbers of the equations should run on, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the right-hand side of the page.
 
4. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa ) should be avoided wherever possible.

5. Computer-generated figures should be produced using pretty bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only, the relevant explanations given below in the caption.
 
6. The figures, including photographs, diagrams etc., should be numbered with Arabic numerals in the same order in which they appear in the text.

7. Computer files on an enclosed disc or sent by e-mail to the Editorial Office are welcome. The manuscript should be written as a Word file – ¤:doc or LATEX file –¤:tex.
 
8. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:
 
(a) for books: the publishing house and the place and year of publication, for example:
`1` Holman J.P.: Heat Transfer. McGraw-Hill, New York 1968.
 
(b) for journals: the name of the journal, volume (Arabic numerals in bold), year of publication (in round brackets), number and, if appropriate, numbers of relevant pages, for example: 
`2` Rizzo F.I., Shippy D.I.: A method of solution for certain problems of transient heat conduction.
AIAA Journal 8(1970), No. 11, 2004–2009.
 
9. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication.

This page uses 'cookies'. Learn more