Applied sciences

Archives of Civil Engineering

Content

Archives of Civil Engineering | 2014 | No 1 |

Abstract

Steel frame wind bracing systems are usually made of hot rolled profiles connected to frame elements directly or through a gusset plate. The behaviour of angle bracing members is generally complex since controlled by tension or compression, bending and torsion. The common practice is to transform the problem of complex behaviour into the buckling strength of a truss member. This paper deals with an analytical formulation of the force-deformation characteristic of a single angle brace subjected to compression. A strut model takes into consideration the effect of brace end connections and softening effect of its force-deformation characteristic. Two different boundary conditions, typical for engineering practice, are dealt with. Experimental program of testing the behaviour of angle brace in portal sub-frame specimens is described. Results of experimental investigations are presented. They are used for the validation of developed model. Conclusions are formulated with reference to the application of validated brace model in the analysis of braced steel frameworks.

Go to article

Abstract

Starting from consideration that urban intersections are sites with promise for safety and operational improvements, the paper describes the steps taken to develop a crash predictive model for estimating the safety performance of urban unsignalized intersections located in Palermo, Italy. The focus is on unsignalized four-legged one-way intersections widespread in Italian downtowns. The sample considered in the study consist of 92 intersections in Palermo, Italy. For the study were collected crashes occurred in the sites during the years 2006‒2012, geometric design and functional characteristics and traffic flow. Results showed that data were overdispersed and NB1 distributed. In order to account for the correlation within responses Generalized Estimating Equations (GEE) were used under different working correlation matrices.

Go to article

Abstract

This study explores the influence of alkali activators on the initiation of polymerization reaction of alumino-silicate minerals present in class-F fly ash material. Different types of fly ash aggregates were produced with silicate rich binders (bentonite and metakaolin) and the effect of alkali activators on the strength gain properties were analyzed. A comprehensive examination on its physical and mechanical properties of the various artificial fly ash aggregates has been carried out systematically. A pelletizer machine was fabricated in this study to produce aggregate pellets from fly ash. The efficiency and strength of pellets was improved by mixing fly ash with different binder materials such as ground granulated blast furnace slag (GGBS), metakaolin and bentonite. Further, the activation of fly ash binders was done using sodium hydroxide for improving its binding properties. Concrete mixes were designed and prepared with the different fly ash based aggregates containing different ingredients. Hardened concrete specimens after sufficient curing was tested for assessing the mechanical properties of different types concrete mixes. Test results indicated that fly ash -GGBS aggregates (30S2‒100) with alkali activator at 10M exhibited highest crushing strength containing of 22.81 MPa. Similarly, the concrete mix with 20% fly ash-GGBS based aggregate reported a highest compressive strength of 31.98 MPa. The fly ash based aggregates containing different binders was found to possess adequate engineering properties which can be suggested for moderate construction works.

Go to article

Abstract

The paper presents the method of probabilistic optimisation of load bearing capacity and reliability of statically indeterminate bar structures, and of coupling of members in kinematically admissible failure mechanisms (KAFM), which contain minimal critical sets of elements (MCSE). The latter are characterised by the fact that if only a single element is operational, the whole set is operational too. A method of increasing load bearing capacity and reliability of KAFM built from bars dimensioned in accordance with the code is presented. The paper also shows estimation of load bearing capacity and reliability of KAFM of the optimised structures containing elastic-plastic bars with quasi-brittle connections with nodes. The necessity of increasing connection of load bearing capacity and reliability in relation to bar reliability in order to prevent bars from being excluded from MCSE due to connection fracture is estimated.

Go to article

Abstract

The influence of the CO₂ concentration in a local air zone in naturally ventilated residential houses on the residents’ behaviour was numerically investigated. A numerical two-dimensional CFD model of the indoor zone based on experiments performed by the authors was used. Different resident locations in the fluid domain and different inlet velocities imposed by wind were considered in simulations. The overall thermal comfort and IAQ indices were also calculated. The investigations results show that in contrast to the overall air quality, the local CO₂ was strongly dependent upon the resident location, fresh air inlet velocity and ventilation system type.

Go to article

Abstract

The transition effect between different track-foundation systems is examined from the point of view of energy that is produced during the passage of load. Analytical solution is given. A model of beam on elastic foundation with damping is used as the base model. It is developed into a model composed of two parts that represent the track-subgrade system with an abrupt change in mechanical parameters: bending stiffness, foundation stiffness, damping, and mass. Several calculations are carried out including examples of comparative calculations with the Finite Difference Model and the Finite Element Model. Transient rail deflections and energy are determined, which may serve to estimate the rate of track-subgrade deterioration.

Go to article

Abstract

The main objective of this investigation is to assess the feasibility of strengthening of corroded (damaged) square hollow steel tubular sections subjected to compression and to develop or predict the suitable wrapping scheme of fibre reinforced polymer (FRP) to enhance the structural behaviour of it.For this study, compact mild steel tubes were used with the main variable being FRP characteristics. Carbon fibre reinforced polymer (CFRP) fabrics was used as horizontal strips (lateral ties) with other parameters such as the number of layers and spacing of strips. Among fourteen specimens, six were externally bonded by CFRP strips having a constant width of 50 mm with a spacing of 20 mm and the remaining six were externally bonded by CFRP strips having a constant width of 70 mm with a spacing of 20 mm, two columns were unbonded. Experiments were undertaken until the failure of columns to fully understand the influence of FRP characteristics on the compressive behaviour of the square sections including their failure modes, axial stress-strain behaviour, enhancement in the load carrying capapcity, and effect of distribution of CFRP layers. Finally, the behaviour of externally bonded hollow tubular sections was compared with one another and also with the control specimens. Evaluation of the results will lead to optimum CFRP jacketing/wrapping arrangements for the steel tubes considered here.

Go to article

Editorial office

Editor-in-Chief
Henryk Zobel


Deputy Editor-in-Chief
Mariola Książek


Scientific Advisory Committee
:
Andrzej M. Brandt
Werner Brilon (Germany)
Jacek Chróścielewski
Luc Courard (Belgium)
Andrzej Garbacz
Andrzej Garstecki
Wojciech Gilewski
Marian Giżejowski
Oleg Kapliński
Piotr Konderla
Aleksander Kozłowski
Marian Kwietniewski
Zbigniew Młynarek
Andrzej S. Nowak (USA)
Anna Siemińska-Lewandowska
Jan Szwabowski
Waldemar Świdziński
Andrew P. Tarko (USA)
Marian Tracz
Edmundas K. Zavadskas (Lithuania)
Jerzy Ziółko

Secretary
Katarzyna Orzeł

Contact

 

Politechnika Warszawska

Wydział Inżynierii Lądowej

Al. Armii Ludowej 16, 00-637 Warszawa, Polska Pokój 618; Telefon 22 234 62 84

e-mail: ace@il.pw.edu.pl;

website: http://ace.il.pw.edu.pl

 

 

 

Instructions for authors

GUIDELINES FOR AUTHORS

1. Preparation of the paper

General: Author is responsible for the Paper contents including copyrights and text formatting. The manuscript should be written in English. It should be typed using 12 p TNR font with 1.5 line spacing, on single-sided A4 sheets with 2 cm margins. The paper should not exceed 10 pages including tables and figures plus 2 pages of an extended summary (TNR 10 pt. justify align), started from new page at the end of the manuscript. Summary in Polish for Polish natives only, others - summary in English.

The first page and the main text: The first page of the article should contain: (1) the title of the article, (2) the name, academic merits, affiliation and e-mail of each author, (3) the name and the address of the author to whom correspondence, proofs and reprints should be sent, (4) a summary of 50-150 words, (5) a list of key words (not to exceed 8). The main text should be divided into numbered (1, 2, etc.) and titled sections and, if needed, into subsections (1.1, 1.2, ... in Section 1, 2.1, 2.2, ... in Section 2, etc.). The abstract of 50-150 words is required on a separate sheet. Polish natives authors only are requested to enclose Polish translation of the abstract, others - abstract in English.

Tables and figures: Tables and figures should be inserted into the text (black-and-white figures and glossy photographs),numbered consecutively and titled. They should be referred to in the text as Fig. 1, Fig. 2, ..., Table 1, Table 2. A list of figures and tables captions (TNR 11 pt. left align, in Polish - for Polish natives only and in English) should be provided on separate sheet(s) at the end of the manuscript beforean extended summary. Colour figures will be accepted only if the colour is essential for the explanation.

Units and mathematical formulae: SI units and abbreviations are obligatory. Mathematical formulae should be typewritten and centred. The formulae referred to in the text are to be numbered consecutively in each Section, i.e. (1.1), (1.2), ... in Section 1, (2.1), (2.2), ... in Section 2, etc. The numbers should be placed in parentheses ( ) at the left margin. The formulae are to be referred to in the text as Eq. (1.1),, Eq. (1.2), ..., Eq. (2.1), Eq. (2.2), ..., etc. The formulae not referred to in the text should not be numbered.

Bibliography: References are to be listed at the end of the paper in the alphabetical order and consecutively numbered. A reference to a published paper should be referred to in the text by the last name(s) of author(s) and the reference's number in brackets [ ]. Each item should contain full bibliographical data in the format illustrated by the following examples:

[1] M. Abramowitz and I. A. Stegun, Eds. Handbook of Mathematical Functions (Applied Mathematics Series 55). Washington, DC: NBS, 1964, pp. 32-33.

[2] M. Gorkii, “Optimal design”, Dokl. Akad. Nauk SSSR, vol. 12, pp. 111-122, 1961.

(Transl.: in L. Pontryagin, Ed., The Mathematical Theory of Optimal Processes. New York: INTERSCIENCE, 1962, Ch. 2, sec. 3, pp. 127-135).

[3] B. Klaus and P. Horn, Robot Vision. Cambridge, MA: MIT Press, 1986.

[4] E. F. Moore, “Gedanken-experiments on sequential machines”, in Automata Studies

(Ann. of Mathematical Studies, no. 1), C. E. Shannon and J. McCarthy, Eds. Princeton, NJ: Princeton Univ. Press, 1965, pp. 129-153.

[5] R. L. Myer, “Parametric oscillators and nonlinear materials”, in Nonlinear Optics, vol. 4, P. G. Harper and B. S. Wherret, Eds. San Francisco, CA: Academic, 1977, pp. 47-160.

[6] L. Stein, “Random patterns”, in Computers and You, J. S. Brake, Ed. New York: Wiley, 1994, pp. 55-70.

[7] Westinghouse Electric Corporation (Staff of Technology and Science, Aerospace Div.), Integrated Electronic Systems. Englewood Cliffs, NJ: Prentice-Hall, 1970.

[8] G. O. Young, “Synthetic structure of industrial plastics”, in Plastics, vol. 3, Polymers of Hexadromicon, J. Peters, Ed., 2nd ed. New York: McGraw-Hill, 1964, pp. 15-64.

In special cases, other formats related to codes, reports, dissertations, etc. will be accepted.

Layout of the text can be downloaded from ace website: http://ace.il.pw.edu.pl

2. Submission of the paper

Two electronic versions of the manuscript (DOC and PDF file) and License to publish should be submitted and sent directly to the Editor-in-chief by e-mail to: ace@il.pw.edu.pl

Signing license agreement is required.

3. Proof read: Proofs will be sent to the corresponding author to correct any typesetting errors. Alterations to the original manuscript at this stage will not be accepted. Corrected proofs page must be mailed to the Editorial Office as soon as possible.

4. Copyright: Submission of a paper to Archives of Civil Engineering implies that the material is an original and unpublished work, not under consideration for publication elsewhere. If permission for publication of any material is required, it should be obtained from appropriate sources by the author. The corresponding author is responsible for the other authors' approval of the paper publication.

5. Reprints: The corresponding author will receive ten reprints and PDF file of the published paper free of charge.

6. Other information: Apart from research papers, other articles such as review papers, brief notes, discussions and reports may be published in the journal. Monographic papers and state-of-the-art papers are accepted after prior approval of the Editor. Reports on important conferences held in Poland may also be published. Editor decides whether the paper fulfil all requirements i.e. formal and scientific. Editor nominates two reviewers, who shall forward reviews of the accepted publication.

The paper will be published in ACE provided that the reviews are positive. If reviewers have some comments authors have to correct the paper. Papers are subject to open discussion. All letters should be addressed to the Editorial Office and will be published together with the authors' response.

7. Fees: Submission of the paper is free of charge. Submitted papers are accepted for publication after a positive opinion of two independent reviewers. When publication accepted Author will be informed by email about article processing charge incl. amount and payment deadline. ACE is non for profit and all fees are calculated to cover operational costs only. Payment is required to the following bank account:

OFICYNA WYDAWNICZA POLITECHNIKI WARSZAWSKIEJ

ul. Polna 50, 00-644 WARSAW

PKO IV Department in WARSAW

Number: PL 84 1240 1053 1111 0000 0500 5707

with annotation: "Author(s) name and surname, ACE"

This page uses 'cookies'. Learn more