Opis

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess (PAN Electronic Library, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

Scoring assigned by the Polish Ministry of Science and Higher Education: **40
points **

CiteScore metrics from Scopus, CiteScore 2018: **1.09**

SCImago Journal Rank (SJR) 2018: **0.221**

Source Normalized Impact per Paper (SNIP) 2018: **0.617**

ICI Journal Master List 2018, Index Copernicus Value: **121.17**

ISSN

ISSN: 1427-4221, eISSN: 2300-2506

Wydawcy

Polish Academy of Sciences

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 5-13
| DOI: 10.2478/aee-2013-0001

Słowa kluczowe:
probability of occurrence of electric shock effects
method for estimating
impedance of human body
touch currents
effects of electric shock

The article provides a theoretical basis for a method allowing to calculate probability of effects of electric shock, as well as a method for determining probabilistic characteristics of random touch current values and of human body impedance in a person who suffered from specific effects of electric shock. Results of example calculations are presented, including probabilities of occurrence of sensory symptoms, exceeding the letgo threshold, and development of ventricular fibrillation, as well as probabilistic characteristics of random touch current values and of impedance of human body in people who experienced specific effects of electric shock.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 15-23
| DOI: 10.2478/aee-2013-0002

Słowa kluczowe:
space vector
neutral point voltage
voltage offset
PWM

The unbalance of the neutral point voltage is an inherent problem of three-level neutral-point-clamped (NPC) inverter, the effect of neutral point voltage balancing which is caused by voltage vector is analyzed, and the relationship of the voltage offset and neutral point voltage is studied in this paper. This paper proposes a novel neutral point balance strategy for three-level NPC inverter based on space vector pulse width modulation (SVPWM). A voltage offset is added to the modulation wave, and a closed-loop neutral point voltage balance control system is designed. In the control system, the dwelling time of synthesis voltage vectors for SVPWM is varied to solve the problem of the unbalance of the neutral point voltage, the sequence of the voltage vectors maintains unchanging. Simulation and experimental results show the neutral point voltage balancing control strategy based on SVPWM is effective.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 25-41
| DOI: 10.2478/aee-2013-0003

Słowa kluczowe:
sensorless indirect vector controlled IM drives
speed estimator
reactive power
MRAS
neural network
back propagation algorithm

This paper presents a novel speed estimator using Reactive Power based Model Reference Neural Learning Adaptive System (RP-MRNLAS) for sensorless indirect vector controlled induction motor drives. The Model Reference Adaptive System (MRAS) based speed estimator using simplified reactive power equations is one of the speed estimation method used for sensor-less indirect vector controlled induction motor drives. The conventional MRAS speed estimator uses PI controller for adaptation mechanism. The nonlinear mapping capability of Neural Network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. This paper proposes the use of neural learning algorithm for adaptation in a reactive power technique based MRAS for speed estimation. The proposed scheme combines the advantages of simplified reactive power technique and the capability of neural learning algorithm to form a scheme named “Reactive Power based Model Reference Neural Learning Adaptive System” (RP-MRNLAS) for speed estimator in Sensorless Indirect Vector Controlled Induction Motor Drives. The proposed RP-MRNLAS is compared in terms of accuracy, integrator drift problems and stator resistance versions with the commonly used Rotor Flux based MRNLAS (RF-MRNLAS) for the same system and validated through Matlab/Simulink. The superiority of the RP-MRNLAS technique is demonstrated.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 43-54
| DOI: 10.2478/aee-2013-0004

Słowa kluczowe:
loss and heat
damper bars
tubular hydro-generator
electromagnetic field and temperature field

In order to research the losses and heat of damper bars thoroughly, a multislice moving electromagnetic field-circuit coupling FE model of tubular hydro-generator and a 3D temperature field FE model of the rotor are built respectively. The factors such as rotor motion and non-linearity of the time-varying electromagnetic field, the stator slots skew, the anisotropic heat conduction of the rotor core lamination and different heat dissipation conditions on the windward and lee side of the poles are considered. Furthermore, according to the different operating conditions, different rotor structures and materials, compositive calculations about the losses and temperatures of the damper bars of a 36 MW generator are carried out, and the data are compared with the test. The results show that the computation precision is satisfied and the generator design is reasonable.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 55-75
| DOI: 10.2478/aee-2013-0005

Słowa kluczowe:
active power filter
active current
power control
power quality

The considered shunt active power filter can be controlled not only to compensate non-active current in the supply source, but additionally to optimize energy flow between the source and the load. In such a case the filter shapes the source current to be active and simultaneously regulates its magnitude. The presented filter/buffer can operate properly even when the load contains AC or DC variable energy source of any characteristic. The device can optimize energy flow for a single load, but also for a group of loads as well. The distinctive feature of the employed control method of the filter/buffer is that certain changes of energy stored in the device are utilized as the source of information concerning the active current of the load. This control method is very flexible and can be implemented to nearly all structures of active filters, for DC, single- and multiphase circuits.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 77-90
| DOI: 10.2478/aee-2013-0006

Słowa kluczowe:
electric drive
converter system model
power grid

This paper presents a computationally efficient method for modelling an impact of the converter drive on the power grid. The formalized variable structure method (FVSM) allows for comprehensive studies of the effect on the power grid and examining the relation between this effect and the number of drive and feeding line parameters. In order to obtain a comprehensive model along with the model of the power grid, the parameters that are applied originate from a drive of a coal-fired power station. These parameters have been determined based on assessment and estimation. The estimation process was conducted with the aid of a model that allows for the commutation of power electronic elements. The authors confirmed that the model was correct by comparing empirical and theoretical voltage and current waveforms. Harmonic content of the voltage and current in the power grid which feeds the drive are considered to be the measure of the converter drive impact on the power grid. The standard method for the reduction of a harmonic content in the voltage and current involves the application of line reactors and distribution or converter transformers. As an example, the authors determine the impact of the drive on the power grid with respect to the adopted parameters of the line reactor. This example presents FVSM abilities with regard to simulation of complex systems that contain power grid components and converter drives.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 91-110
| DOI: 10.2478/aee-2013-0007

Słowa kluczowe:
IPFC
power injection model
power flow control
ABC algorithm
cost minimization

This paper proposes a methodology based on installation cost for locating the optimal position of interline power flow controller (IPFC) in a power system network. Here both conventional and non conventional optimization tools such as LR and ABC are applied. This methodology is formulated mathematically based on installation cost of the FACTS device and active power generation cost. The capability of IPFC to control the real and reactive power simultaneously in multiple transmission lines is exploited here. Apart from locating the optimal position of IPFC, this algorithm is used to find the optimal dispatch of the generating units and the optimal value of IPFC parameters. IPFC is modeled using Power Injection (PI) model and incorporated into the problem formulation. This proposed method is compared with that of conventional LR method by validating on standard test systems like 5-bus, IEEE 30-bus and IEEE 118-bus systems. A detailed discussion on power flow and voltage profile improvement is carried out which reveals that incorporating IPFC into power system network in its optimal location significantly enhance the load margin as well as the reliability of the system.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 111-122
| DOI: 10.2478/aee-2013-0008

Słowa kluczowe:
propagation of electromagnetic pulse
dielectric dispersion
frequency selective materials
broadband time-domain simulation
finite element time-domain method

The paper describes the formulation and implementation of the broadband finite element time domain algorithm. The presented formalism is valid to analysis of electromagnetic phenomena in linear, frequency selective materials. The complex profile of permittivity of materials is approximated using a set of the Lorentz resonance models. The solution of the integro-differential second order equation is obtained using a singlestep integration scheme and a recursive convolution algorithm. The discussed formulation enables to adopt the structure of the narrowband part as well as the phase of calculation of the convolution equations for the subsequent components. The properties of the algorithm are validated using a finite difference broadband algorithm.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 123-140
| DOI: 10.2478/aee-2013-0009

Słowa kluczowe:
analytic field solution
eddy current
magnetic coupling
phenomenon

Harmonic flux penetrating solid conductive material causes eddy currents inside. It seems plausible that its magnitude does not exceed the exciting magnetomotive force (mmf). However, under certain circumstances the opposite occurs. This article deals with a special case in which the eddy current is approximately 13% higher than the exciting mmf. An analytical field solution, a finite element calculation and a measurement proving this phenomenon are presented. A special flux linkage is turned out to be the reason for this phenomenon. Finally, another example with higher pronounced mmfexceeding in a coil is presented.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 141-152
| DOI: 10.2478/aee-2013-0010

In this paper, a novel bacterial foraging algorithm (BFA) based approach for robust and optimal design of PID controller connected to power system stabilizer (PSS) is proposed for damping low frequency power oscillations of a single machine infinite bus bar (SMIB) power system. This paper attempts to optimize three parameters (Kp, Ki, Kd) of PID-PSS based on foraging behaviour of Escherichia coli bacteria in human intestine. The problem of robustly selecting the parameters of the power system stabilizer is converted to an optimization problem which is solved by a bacterial foraging algorithm with a carefully selected objective function. The eigenvalue analysis and the simulation results obtained for internal and external disturbances for a wide range of operating conditions show the effectiveness and robustness of the proposed BFAPSS. Further, the time domain simulation results when compared with those obtained using conventional PSS and Genetic Algorithm (GA) based PSS show the superiority of the proposed design.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 153-162
| DOI: 10.2478/aee-2013-0011

Słowa kluczowe:
transformer
drying process
transfer function
artificial neural network

Since a few years ago, there is an increasing interest for utilization of transfer functions (TF) as a reliable method for diagnosing of mechanical faults in transformer structure. However, this paper aims to develop the application of TF method in order to evaluate the drying quality of active part during the manufacturing process of transformer. To reach this goal, the required measurements are carried out on 50 MVA 132 KV/33 KV power transformer when active part is placed in the drying chamber. Two different features extracted from the measured TFs are then used as the inputs to artificial neural network (ANN) to give an estimate for required time in drying process. Results show that this new represented method could well forecast the required time. The results obtained from this method are valid for all the transformers which have the same design.

Archives of Electrical Engineering | 2013 | vol. 62 | No 1 March
| 163-177
| DOI: 10.2478/aee-2013-0012

Słowa kluczowe:
nonlinear boundary condition
nonlinear conductivity
analytical scheme

The paper presents a method of how the nonlinear boundary condition [1] may be applied in nonlinear problems of electromagnetic field theory. It is introduced for problems with nonlinear conductivity. An analytical procedure has been constructed, which seeks to reduce calculations related with the nonlinear region. In order to verify the proposed solutions, two problems have been formulated: one of linear and the other of cylindrical symmetry. These have been additionally solved by the authors’ modification of the perturbation method that has been described in previous papers [7, 8, 10]. The electromagnetic field distribution obtained thereby has served as a referential result since it can obtain very accurate solutions [10]. Relative errors of electric and magnetic field strength are introduced to verify the results.

**Editor-in-Chief**

Professor Andrzej Demenko, Poznan
University of Technology, Poland

**Deputy/ Managing Editor**

Mariusz Barański, Ph.D.,
Poznan University of Technology, Poland

Łukasz Knypiński, Ph.D.,
Poznan University of Technology, Poland

**Editorial Advisory Board**

Chairman: **Marian P.
Kaźmierkowski, **Warsaw, Poland

Secretary: **Mariusz
Jagieła**, Opole, Poland

**Members professors:****Anouar Belahcen****,**
Espoo, Finland

**Frede Blaabjerg,**Aalborg, Denmark

**Ion Boldea,**Timisoara, Romania

**Herbert De Gersem,**Darmstadt, Germany

**Jacek Gieras,** Rockford, USA

**Kay Hameyer,** Aachen, Germany

**Marian K. Kazimierczuk,** Dayton, USA

**Stefan Kulig,** Dortmund, Germany

**David A. Lowther,** Montreal, Canada

**Jacek Marecki,** Gdańsk, Poland

**Zhuoxiang Ren**, Paris, France

**José Rodríguez Pérez, **Santiago, Chile

**Ryszard Sikora,** Szczecin, Poland

**Zbigniew Styczyński,** Magdeburg, Germany

**Jan Sykulski,** Southampton, UK

**Sławomir Wiak,** Łódź, Poland

Language Editor

**Krystyna Guzek**

__Statistical Editor__

**Mariusz Barański,** Poznan, Poland

Poznan
University of Technology

__Theme Editors__

**Jerzy Barglik, Gliwice**, Poland

Professor at Silesian
University of Technology**Zbigniew Lubosny, **Gdansk,
Poland

Professor at Gdańnk University of Technology**Marian
Łukaniszyn, **Opole, Poland

Professor at Opole University
of Technology**Marian Pasko, **Gliwice, Poland

Professor
at Silesian University of Technology**Stanisław Piróg, **Krakow,
Poland

Professor at AGH University of Science and Technology**Henryka
Danuta Stryczewska, **Lublin, Poland

Professor at Lublin
University of Technology**Jan Sykulski, **Southampton,
UK

Professor at University of Southampton**Adam Szelag, **Warsaw,
Poland

Professor at Warsaw University of Technology**Romulad
Włodek, **Krakow, Poland

Professor at AGH University of
Science and Technology

__Technical Editor__ :

Typesetting in LATEX: Drukarnia Braci Grodzickich Sp.j., 05-500 Piaseczno, ul. Geodetów 47a, Poland

All contributions should be addressed to the Editor-in-Chief or the Editorial Office:

**Address of the Editorial Office:**

Archives of Electrical Engineering

Piotrowo 3A (Room 612X)

60-965 Poznan, Poland

tel: (48-61) 665-26-36

fax: (48-61) 665-23-81

e-mail: aee@put.poznan.pl

Website: www.aee.put.poznan.pl

**ARCHIVES OF ELECTRICAL ENGINEERING (AEE)** (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.,

**Manuscript submission:**

All manuscripts should be submitted electronically on Editorial System.

Submission of paper to the
**Template:**

Microsoft Word is recommended as a standard word processor to prepare
the paper to the AEE journal. If you use the LaTex format, please
transfer your document to Microsoft Word and then use Template AEE.

While editing your paper, make sure that all the mathematical characters (symbols, identifiers, variables, vectors, axis marks, etc.) have the required shape, thickness, and slant kept throughout the whole article. The same appearance of a given mathematic character must be retained regardless of its place (text, equations, tables or figures).

The articles that don’t conform to the above will not be processed and published.

,
**The reviewing process:**

Each paper submitted for publication in Archives of Electrical
Engineering is subjected to the following review procedure:

a) the
paper is reviewed by the editor in chief or guest editor for general
suitability for publication in AEE

b) if it is judged suitable two
reviewers are selected and a double blind peer review process takes place

c)
based on the recommendations of the reviewers, the editor then decides
whether the paper should be accepted in its present form, revised or
rejected

d) the author(s) is(are) informed by e-mail on the results
of the reviewing procedure.

The papers are published on average
within 3 months after acceptance.

**Requirements for preparation of manuscripts: **

The manuscripts submitted for publication should not exceed 21 000 characters (ca. 12 pages of a manuscript written on an A4 sheet in Times New Roman, 10pt font size, single line spacing and 3.8 cm margins). The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").

All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.

If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.

The manuscripts are published on average within 3 months after their acceptance.

**Do not change the font sizes or line spacing to squeeze more text
into a limited number of pages. Leave some open space around your
figures. **

The AEE journal publishes an ORCID for all authors. You will need a registered ORCID in order to submit your paper for peer review. ORCID registration is free and only takes a minute. Please note that ORCIDs will be added in the course of the author's proofreads.

,**Text:**

The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.,

**Math:**

Please use the *Microsoft Equation 3.0* editor (comes with
Microsoft Office 2007 and later versions) or the *MathML* editor as
well as *MathType* editor to build an equation in your manuscript.

To
insert an equation in Word, choose Insert, then Object. This will bring
up a dropdown menu, where the Object option should be chosen again.
Pressing it opens a popup window, where the Create New option has to be
clicked. Scrolling down the window allows to find Microsoft Equation 3.0.

**Equations:**

Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.

If the symbols are written in Times New Roman use *italic fonts*. Symbols of **vectors ** and **matrices** should be written in **bold fonts**. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.

Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.,

**Unit Symbols, Abbreviations:**

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength *H* is A/m. Apply the center dot to separate compound units.

Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".

Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."**Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the ** IEEE standard,

**Tables, figures (illustrations) and captions:**

The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.

All figures, figure captions, and tables in the text must be inserted into the correct places.

Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.

Authors are requested to send figures (diagrams, line drawings and photographic images) in separate computer files. JPG, PNG or TIF are the recommended file formats. Photographs, colour and greyscale figures should be at least at a resolution of 400dpi. Linear, including tables should be at a minimum of 600dpi.

All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.

When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.

Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).

AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.,

**Conclusions:**

A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.,

**References:**

References in text must be numbered consecutively by Arabic numerals
placed in square brackets. Please make sure that you use full names of
journals i.e. Archives of Electrical Engineering. Please ensure that all
references in the Reference list are cited in the text and vice versa.

Please
provide name(s) and initials of author(s), the title of the manuscript,
editors (if any), the title of the journal or book, a volume number, the
page range, and finally the year of publication in brackets.**You
can use the rules presented on the site: **IEEE
standard b>__Examples of the ways in which references
should be cited are given below:__**Journal manuscript**

[1]
Author1 A., Author2 A., *Title of paper*, Title of periodical, vol.
x, no. x, pp. xxx-xxx (YEAR).*example*

[1] Steentjes S., von
Pfingsten G., Hombitzer M., Hameyer K., *Iron-loss model with
consideration of minor loops applied to FE-simulations of electrical
machines*, IEEE Transactions on Magnetics. vol. 49, no. 7, pp.
3945-3948 (2013).

[2] Idziak P., *Computer Investigation of
Diagnostic Signals in Dynamic Torque of Damaged Induction Motor*,
Electrical Review (in Polish), to be published.

[3] Cardwell W., *Finite
element analysis of transient electromagnetic-thermal phenomena in a
squirrel cage motor*, submitted for publication in IEEE Transactions
on Magnetics.**Conference manuscript**

[4] Author A., *Title
of conference paper*, Unabbreviated Name of Conf., City of Conf.,
Country of Conf., pp. xxx-xxx (YEAR).*example*

[4] Popescu
M., Staton D.A., *Thermal aspects in power traction motors with
permanent magnets*, Proceedings of XXIII Symposium Electromagnetic
Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36
(2016).**Book, book chapter and manual**

[5] Author1 A.,
Author2 A.B., *Title of book*, Name of the publisher (YEAR).*example*

[5]
Zienkiewicz O., Taylor R.L., *Finite Element method*, McGraw-Hill
Book Company (2000).**Patent **

[6] Author1 A., Author2
A., *Title of patent*, European Patent, EP xxx xxx (YEAR).*example*

[6]
Piech Z., Szelag W., *Elevator brake with magneto-rheological fluid*,
European Patent, EP 2 197 774 B1 (2011).**Thesis**

[7]
Author A., *Title of thesis*, PhD Thesis, Department, University,
City of Univ. (YEAR).*example*

[7] Driesen J., *Coupled
electromagnetic-thermal problems in electrical energy transducers*,
PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).**For
on electronic forms**

[8] Author A., *Title of article*, in
[Title of Conference, record as it appears on the copyright page], ©
[applicable copyright holder of the Conference Record] (copyright year),
doi: [DOI number]. *example*

[8] Kubo M., Yamamoto Y., Kondo
T., Rajashekara K., Zhu B., *Zero-sequence current suppression for
open-end winding induction motor drive with resonant controller*,in
IEEE Applied Power Electronics Conference and Exposition (APEC), © APEC
(2016), doi: 10.1109/APEC.2016.7468259 **Website**

[9]
http://www.aee.put.poznan.pl, accessed April 2010.

**Proofs: **

Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.,

**Fees for printing the papers in Archives of Electrical
Engineering: **

AEE is published in Open Access, which means that all articles are
available on the internet to all users immediately upon publication free
of charge for the readers. Authors will be asked to a declaration that
they are ready to cover the costs of printing their article.__The
fee for the publication of an article in the AEE journal is 200 Euro.__

**Abstracting & Indexing: **

Archives of Electrical Engineering is covered by the following services:

- Arianta
- Baidu Scholar
- BazTech
- Celdes
- CNKI Scholar (China National Knowledge Infrastucture)
- CNPIEC
- DOAJ
- EBSCO - TOC Premier
- EBSCO (relevant databases)
- EBSCO Discovery Service
- Elsevier - Compendex
- Elsevier - Engineering Village
- Elsevier - SCOPUS
- Genamics JournalSeek
- Google Scholar
- ICI Journals Master List
- Inspec
- J-Gate
- Naviga (Softweco)
- POL-Index
- Primo Central (ExLibris)
- ProQuest - Advanced Technologies Database with Aerospace
- ProQuest - Electronics and Communications Abstracts
- ProQuest - Engineering Journals
- ProQuest - High Tech Research Database
- ProQuest - Illustrata: Technology
- ProQuest - SciTech Journals
- ProQuest - Technology Journals
- ProQuest - Technology Research Database
- SCImago (SJR)
- Summon (Serials Solutions/ProQuest)
- TDOne (TDNet)
- TEMA Technik und Management
- Thomson Reuters - Emerging Sources Citation Index
- Ulrich's Periodicals Directory/ulrichsweb
- WorldCat (OCLC)

Archives of Electrical Engineering jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0.

Archives of Electrical Engineering is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0.