Opis

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess (PAN Electronic Library, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

Scoring assigned by the Polish Ministry of Science and Higher Education: **40
points **

CiteScore metrics from Scopus, CiteScore 2019: **1.7**

SCImago Journal Rank (SJR) 2019: **0.202**

Source Normalized Impact per Paper (SNIP) 2019: **0.444**

ICI Journal Master List 2019, Index Copernicus Value: **121.11**

ISSN

ISSN: 1427-4221, eISSN: 2300-2506

Wydawcy

Polish Academy of Sciences

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 351-359
| DOI: 10.2478/aee-2015-0027

Słowa kluczowe:
coercivity
hyperbolic tangent transformation
scaling procedure

The paper presents a scaling approach to the analysis of coercivity. The Widom-based procedure of coercivity scaling has been tested for non-oriented electrical steel. Due to insufficient results, the scaling procedure was improved relating to the method proposed by Van den Bossche. The modified procedure of coercivity scaling gave better results, in comparison to the original approach. The influence of particular parameters and a range of measurement data used in the estimations on the final effect of the coercivity scaling were discussed.

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 361-370
| DOI: 10.2478/aee-2015-0028

Słowa kluczowe:
electric shock hazard
induced voltages
power cables
power system

This paper considers electric shock hazard due to induced sheath voltages in 110 kV power cables. The purpose of this paper is to find an optimal configuration of the power cable system, taking into account electric shock hazard and ability of the system to transfer maximal power. A computer simulations on a computer model of the local power system, comprising high voltage power cables, were carried out. This model enables to analyse various configurations of the metallic cable sheaths bonding and earthing (singlepoint bonding, both-ends bonding, cross-bonding) and their impact on induced voltages in the cable sheaths. The analysis presented in the paper shows, that it is possible to find an optimal configuration of the complicated power cable system, in terms of electric shock hazard, maximal power transfer as well as economic aspects.

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 371-377
| DOI: 10.2478/aee-2015-0029

Słowa kluczowe:
LTV system
linear time varying
parametric system
time-frequency response

This paper presents the method of analysis of parametric systems in frequency domain. These systems are also referred to as linear time varying systems (LTV). The article includes a description of an analytical method for determining the frequency response of the first order parametric circuit with non-periodically variable parameters. The results have been illustrated by an example.

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 379-389
| DOI: 10.2478/aee-2015-0030

Słowa kluczowe:
magnetism
magnetic field co-energy
mathematical modelling
parameters estimation

Energy based approach was used in the study to formulate a set of functions approximating the magnetic flux linkages versus independent currents. The simplest power series that approximates field co-energy and linked fluxes for a two winding core of an induction machine are described by a set of common unknown coefficients. The authors tested three algorithms for the coefficient estimation using Weighted Least-Squared Method for two different positions of the coils. The comparison of the approximation accuracy was accomplished in the specified area of the currents. All proposed algorithms of the coefficient estimation have been found to be effective. The algorithm based solely on the magnetic field co-energy values is significantly simpler than the method based on the magnetic flux linkages estimation concept. The algorithm based on the field co-energy and linked fluxes seems to be the most suitable for determining simultaneously the coefficients of power series approximating linked fluxes and field co-energy.

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 391-403
| DOI: 10.2478/aee-2015-0031

Słowa kluczowe:
grid connected wind power turbine
three-level converter
flying capacitors

In this paper a system of a grid side and a generator side converters, both working with a common capacitor, is presented. The 6-phase asymmetric inset-type SMPMSM generator is used. A large pole pair number of this generator enables a gearless wind turbine operation. The fundamental and 3rd harmonic cooperation is used to increase the generator performance. This is accomplished by means of the 3rd harmonic current injection. For that reason the generator side converter must have a neutral connection.

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 405-426
| DOI: 10.2478/aee-2015-0032

Słowa kluczowe:
generalized unified power flow controller
optimal reactive power dispatch
social welfare
multi-objective optimization

In this paper a novel non-linear optimization problem is formulated to maximize the social welfare in restructured environment with generalized unified power flow controller (GUPFC). This paper presents a methodology to optimally allocate the reactive power by minimizing voltage deviation at load buses and total transmission power losses so as to maximize the social welfare. The conventional active power generation cost function is modified by combining costs of reactive power generated by the generators, shunt capacitors and total power losses to it. The formulated objectives are optimized individually and simultaneously as multi-objective optimization problem, while satisfying equality, in-equality, practical and device operational constraints. A new optimization method, based on two stage initialization and random distribution processes is proposed to test the effectiveness of the proposed approach on IEEE-30 bus system, and the detailed analysis is carried out.

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 427-439
| DOI: 10.2478/aee-2015-0033

Słowa kluczowe:
hybrid excitation synchronous motor
wide speed range
vector control
flux-weakening control
current distributor

The hybrid excitation synchronous motor (HESM), which aim at combining the advantages of permanent magnet motor and wound excitation motor, have the characteristics of low-speed high-torque hill climbing and wide speed range. Firstly, a new kind of HESM is presented in the paper, and its structure and mathematical model are illustrated. Then, based on a space voltage vector control, a novel flux-weakening method for speed adjustment in the high speed region is presented. The unique feature of the proposed control method is that the HESM driving system keeps the q-axis back-EMF components invariable during the flux-weakening operation process. Moreover, a copper loss minimization algorithm is adopted to reduce the copper loss of the HESM in the high speed region. Lastly, the proposed method is validated by the simulation and the experimental results.

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 441-458
| DOI: 10.2478/aee-2015-0034

Słowa kluczowe:
arc modelling
overvoltages studies
EMTP-ATP program
transients analysis

Electric arc is a complex phenomenon occurring during the current interruption process in the power system. Therefore performing digital simulations is often necessary to analyse transient conditions in power system during switching operations. This paper deals with the electric arc modelling and its implementation in simulation software for transient analyses during switching conditions in power system. Cassie, Cassie-Mayr as well as Schwarz-Avdonin equations describing the behaviour of the electric arc during the current interruption process have been implemented in EMTP-ATP simulation software and presented in this paper. The models developed have been used for transient simulations to analyse impact of the particular model and its parameters on Transient Recovery Voltage in different switching scenarios: during shunt reactor switching-off as well as during capacitor bank current switching-off. The selected simulation cases represent typical practical scenarios for inductive and capacitive currents breaking, respectively.

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 459-470
| DOI: 10.2478/aee-2015-0035

Słowa kluczowe:
anti-collision identification
interrogation zone
multiplexed antennas
RFID

The operation of an anti-collision RFID system is characterized by the interrogation zone which should be estimated in any direction of 3D space for a group of electronic transponders. The interrogation zone should be as large as possible. However, the many problems in this area are due to the fact that energy can be transferred to transponders only on a limited distance. The greatest flexibility in developing RFID applications and shaping the interrogation zone can be achieved using the system with an antenna multiplexer. Therefore the problem of the interrogation zone determination in HF RFID systems with two orthogonal RWD antennas is presented in the paper. The perceived issues have been effectively dealt with and the solution has been proposed on the basis of the elaborated model. Conducted studies have been used to develop the software tool JankoRFIDmuxHF in the Mathcad environment. The research results are analysed in an example system configuration. The specialized measuring stand has been used for experimental verification of the identification efficiency. The convergence of the measurements and calculations confirms a practical usefulness of the presented concept of interrogation zone determination in anti-collision systems. It also shows the practical utility of the developed model and software tools.

10
Steady-state time-periodic finite element analysis of a brushless DC motor drive considering motion

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 471-486
| DOI: 10.2478/aee-2015-0036

Słowa kluczowe:
finite elements
brushless machines
inverter drives
steady-state
mathematical modeling

This paper aims at providing a framework for comprehensive steady-state time-domain analysis of rotating machines considering motion. The steady-state waveforms of electromagnetic and circuit quantities are computed via iterative solution of the nonlinear field-circuit-and-motion problem with constraints of time periodicity. The cases with forced speed and forced load torque are considered. A comparison of execution times with a conventional time-stepping transient model is carried out for two different machines. The numerical stability of a time-periodic model with forced speed is shown to be worse than that of traditional transient time-stepping one, although the model converges within a reasonable number of iterations. This is not the case if forced load via equation of mechanical balance is accounted for. To ensure convergence of the iterative process the physical equation of motion is replaced by the fixed-point equation. In this way the model delivers time-periodic solutions regarding not only the electromagnetic quantities but also the rotational speed.

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 487-504
| DOI: 10.2478/aee-2015-0037

Słowa kluczowe:
Solar PV system
Wind energy conversion system
Hybrid power system
DC-DC converters
fuzzy logic based MPPT
Three phase PWM inverter

Many parts of remote locations in the world are not electrified even in this Advanced Technology Era. To provide electricity in such remote places renewable hybrid energy systems are very much suitable. In this paper PV/Wind/Battery Hybrid Power System (HPS) is considered to provide an economical and sustainable power to a remote load. HPS can supply the maximum power to the load at a particular operating point which is generally called as Maximum Power Point (MPP). Fuzzy Logic based MPPT (FLMPPT) control method has been implemented for both Solar and Wind Power Systems. FLMPPT control technique is implemented to generate the optimal reference voltage for the first stage of DC-DC Boost converter in both the PV and Wind energy system. The HPS is tested with variable solar irradiation, temperature, and wind speed. The FLMPPT method is compared with P&O MPPT method. The proposed method provides a good maximum power operation of the hybrid system at all operating conditions. In order to combine both sources, the DC bus voltage is made constant by employing PI Controllers for the second stage of DC-DC Buck-Boost converter in both Solar and Wind Power Systems. Battery Bank is used to store excess power from Renewable Energy Sources (RES) and to provide continuous power to load when the RES power is less than load power. A SPWM inverter is designed to convert DC power into AC to supply three phase load. An LC filter is also used at the output of inverter to get sinusoidal current from the PWM inverter. The entire system was modeled and simulated in Matlab/Simulink Environment. The results presented show the validation of the HPS design.

Archives of Electrical Engineering | 2015 | vol. 64 | No 3 September
| 505-529
| DOI: 10.2478/aee-2015-0038

Słowa kluczowe:
step-down converter
BUCK
CCM
DCM
averaged model
small-signal
transmittance
switch-averaging
separation of variables

Small-signal transmittances: input-to-output and control-to-output of BUCK converter power stage working in CCM or DCM mode are discussed. Ideal converter case and converter with parasitic resistances are considered separately. Derivations of small-signal transmittances, based on different approaches to finding the converter averaged models, are presented and the results are compared. Apart from theoretical considerations, some results of numerical calculations are presented.

**Editor-in-Chief**

Professor Andrzej Demenko, Poznan
University of Technology, Poland

**Deputy/ Managing Editor**

Mariusz Barański, Ph.D.,
Poznan University of Technology, Poland

Łukasz Knypiński, Ph.D.,
Poznan University of Technology, Poland

**Editorial Advisory Board**

Chairman: **Marian P.
Kaźmierkowski, **Warsaw, Poland

Secretary: **Mariusz
Jagieła**, Opole, Poland

**Members professors:****Anouar Belahcen****,**
Espoo, Finland

**Frede Blaabjerg,**Aalborg, Denmark

**Ion Boldea,**Timisoara, Romania

**Herbert De Gersem,**Darmstadt, Germany

**Jacek Gieras,** Rockford, USA

**Kay Hameyer,** Aachen, Germany

**Marian K. Kazimierczuk,** Dayton, USA

**Stefan Kulig,** Dortmund, Germany

**David A. Lowther,** Montreal, Canada

**Jacek Marecki,** Gdańsk, Poland

**Zhuoxiang Ren**, Paris, France

**José Rodríguez Pérez, **Santiago, Chile

**Ryszard Sikora,** Szczecin, Poland

**Zbigniew Styczyński,** Magdeburg, Germany

**Jan Sykulski,** Southampton, UK

**Sławomir Wiak,** Łódź, Poland

Language Editor

**Krystyna Guzek**

__Statistical Editor__

**Mariusz Barański,** Poznan, Poland

Poznan
University of Technology

__Theme Editors__

**Jerzy Barglik, Gliwice**, Poland

Professor at Silesian
University of Technology**Zbigniew Lubosny, **Gdansk,
Poland

Professor at Gdańnk University of Technology**Marian
Łukaniszyn, **Opole, Poland

Professor at Opole University
of Technology**Marian Pasko, **Gliwice, Poland

Professor
at Silesian University of Technology**Stanisław Piróg, **Krakow,
Poland

Professor at AGH University of Science and Technology**Henryka
Danuta Stryczewska, **Lublin, Poland

Professor at Lublin
University of Technology**Jan Sykulski, **Southampton,
UK

Professor at University of Southampton**Adam Szelag, **Warsaw,
Poland

Professor at Warsaw University of Technology**Romulad
Włodek, **Krakow, Poland

Professor at AGH University of
Science and Technology

__Technical Editor__ :

Typesetting in LATEX: Drukarnia Braci Grodzickich Sp.j., 05-500 Piaseczno, ul. Geodetów 47a, Poland

All contributions should be addressed to the Editor-in-Chief or the Editorial Office:

**Address of the Editorial Office:**

Archives of Electrical Engineering

Piotrowo 3A (Room 612X)

60-965 Poznan, Poland

tel: (48-61) 665-26-36

fax: (48-61) 665-23-81

e-mail: aee@put.poznan.pl

Website: www.aee.put.poznan.pl

**ARCHIVES OF ELECTRICAL ENGINEERING (AEE)** (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.,

**Manuscript submission:**

All manuscripts should be submitted electronically on Editorial System.

Submission of paper to the
**Template:**

Microsoft Word is recommended as a standard word processor to prepare
the paper to the AEE journal. If you use the LaTex format, please
transfer your document to Microsoft Word and then use Template AEE.

While editing your paper, make sure that all the mathematical characters (symbols, identifiers, variables, vectors, axis marks, etc.) have the required shape, thickness, and slant kept throughout the whole article. The same appearance of a given mathematic character must be retained regardless of its place (text, equations, tables or figures).

The articles that don’t conform to the above will not be processed and published.

,
**The reviewing process:**

Each paper submitted for publication in Archives of Electrical
Engineering is subjected to the following review procedure:

a) the
paper is reviewed by the editor in chief or guest editor for general
suitability for publication in AEE

b) if it is judged suitable two
reviewers are selected and a double blind peer review process takes place

c)
based on the recommendations of the reviewers, the editor then decides
whether the paper should be accepted in its present form, revised or
rejected

d) the author(s) is(are) informed by e-mail on the results
of the reviewing procedure.

The papers are published on average
within 3 months after acceptance.

**Requirements for preparation of manuscripts: **

The manuscripts submitted for publication should not exceed 21 000 characters (ca. 12 pages of a manuscript written on an A4 sheet in Times New Roman, 10pt font size, single line spacing and 3.8 cm margins). The manuscripts, written in UK English, should be typed using Template AEE according to the following instructions and should include: a title page with the title of a manuscript, a short title; abstract; key words, text; list of references. A DOI number as well as received and revised data will be completed by Editor. When you open Template.doc, select "Print Layout" from the "View" menu in the menu bar (View > Print Layout). Then type over sections of Template.doc or cut and paste from another document and then use markup styles (Home > Styles). For example, the style at this point in the document is "main text").

All papers submitted for publication are assessed on the basis of the mutual anonymity rule as to the names of reviewers and authors. Authors' names and affiliations should not appear in the attached text/tables/figures.

If English is not your first language, ask an English-speaking colleague to proofread your manuscript. The manuscripts that fail to meet basic standards of literacy are likely to be immediately declined or after the language assessment, sent to the authors for linguistic improvement.

The manuscripts are published on average within 3 months after their acceptance.

**Do not change the font sizes or line spacing to squeeze more text
into a limited number of pages. Leave some open space around your
figures. **

The AEE journal publishes an ORCID for all authors. You will need a registered ORCID in order to submit your paper for peer review. ORCID registration is free and only takes a minute. Please note that ORCIDs will be added in the course of the author's proofreads.

,**Text:**

The pages must be numbered consecutively. Articles should be divided into numbered sections, and if necessary subsections, preferably: Introduction, Material, Methods, Results, Conclusion and References. Any special characters (e.g. Greek, script, etc.) should be named in the margin where the character first occurs in the text. Names of species are to be accentuated with wavy underlining (italics). Equations should be numbered serially (1), (2), ... on the right side of the page. Footnotes should be avoided, if required, they should be used only for brief notes which do not fit well into the text. Figures and tables have to be included into the text. If table is typed on a separate page its position in the text should be marked. Abbreviations should be explained when they first appear in the text.,

**Math:**

Please use the *Microsoft Equation 3.0* editor (comes with
Microsoft Office 2007 and later versions) or the *MathML* editor as
well as *MathType* editor to build an equation in your manuscript.

To
insert an equation in Word, choose Insert, then Object. This will bring
up a dropdown menu, where the Object option should be chosen again.
Pressing it opens a popup window, where the Create New option has to be
clicked. Scrolling down the window allows to find Microsoft Equation 3.0.

**Equations:**

Equations should be typed within the text, centred, and should be numbered consecutively throughout the text. Their numbers should be typed in parentheses, flush right. Equations should be referred to in text, e.g. (1), except at the beginning of a sentence: "Equation (1) is ...". All symbols appearing in equations have to be defined in the text, before or just after the equation.

If the symbols are written in Times New Roman use *italic fonts*. Symbols of **vectors ** and **matrices** should be written in **bold fonts**. Do not italicize Greek fonts and mathematical symbols like e.g.: the derivative symbol d, max, min, etc. The indices of symbols that are indices themselves should be written in a clear manner.

Note that the equation is centered using a center tab stop. Please keep the same font in the formulas and text.,

**Unit Symbols, Abbreviations:**

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

Si units are recommended for use in formulas, drawings and tables., for example the SI unit for magnetic field strength *H* is A/m. Apply the center dot to separate compound units.

Do not mix complete spellings and abbreviations of units: "Wb/m2" or "webers per square meter," not "webers/m2." Spell units when they appear in text: "...a few henries…", not "...a few H…".

Use a zero before decimal points: "0.25," not ".25." Use "cm3," not "cc."**Unit Symbols, SI Prefixes as well as Abbreviations should be writing in accordance with the ** IEEE standard,

**Tables, figures (illustrations) and captions:**

The illustrations (line diagrams and photographs) should be suitable for direct reproduction. The lettering as well the details should have proportional dimensions to maintain their legibility after the usual reduction. All illustrations should be numbered consecutively (Fig. X). Tables are numbered with Arabic numerals.

All figures, figure captions, and tables in the text must be inserted into the correct places.

Figures, photos, tables or other parts of a manuscript that have previously appeared in another publication or are not the property of the authors must be properly acknowledged in the manuscript. Permission to republish these items must be obtained by the corresponding author from a person or institution holding the copyright, usually the publisher.

Authors are requested to send figures (diagrams, line drawings and photographic images) in separate computer files. JPG, PNG or TIF are the recommended file formats. Photographs, colour and greyscale figures should be at least at a resolution of 400dpi. Linear, including tables should be at a minimum of 600dpi.

All colour figures should be generated in the RGB or CMYK colour space, while greyscale images in the greyscale colour space.

When preparing your figures/graphics etc., we suggest the use of the Arial 8 point font for axis numbers and Arial 9 point font for axis names. Figures/graphics etc. can be prepared in one of two proposed ways - see Template AEE.

Tables are numbered with Arabic numerals. Use 9 point Times New Roman for the title of the table and 9 point Times New Roman for the filling of the table (9 in the case of symbols with subscripts).

AEE journal allows an author to publish color figures in e-version at no charge, and automatically convert them to grayscale for print versions. Authors wishing to use the facility of color printing should consult the editors.,

**Conclusions:**

A conclusion might elaborate on the importance of the work or suggest applications and extensions. Although a conclusion may review the main points of the manuscript, do not replicate the abstract as the conclusion.,

**References:**

References in text must be numbered consecutively by Arabic numerals
placed in square brackets. Please make sure that you use full names of
journals i.e. Archives of Electrical Engineering. Please ensure that all
references in the Reference list are cited in the text and vice versa.

Please
provide name(s) and initials of author(s), the title of the manuscript,
editors (if any), the title of the journal or book, a volume number, the
page range, and finally the year of publication in brackets.**You
can use the rules presented on the site: **IEEE
standard b>__Examples of the ways in which references
should be cited are given below:__**Journal manuscript**

[1]
Author1 A., Author2 A., *Title of paper*, Title of periodical, vol.
x, no. x, pp. xxx-xxx (YEAR).*example*

[1] Steentjes S., von
Pfingsten G., Hombitzer M., Hameyer K., *Iron-loss model with
consideration of minor loops applied to FE-simulations of electrical
machines*, IEEE Transactions on Magnetics. vol. 49, no. 7, pp.
3945-3948 (2013).

[2] Idziak P., *Computer Investigation of
Diagnostic Signals in Dynamic Torque of Damaged Induction Motor*,
Electrical Review (in Polish), to be published.

[3] Cardwell W., *Finite
element analysis of transient electromagnetic-thermal phenomena in a
squirrel cage motor*, submitted for publication in IEEE Transactions
on Magnetics.**Conference manuscript**

[4] Author A., *Title
of conference paper*, Unabbreviated Name of Conf., City of Conf.,
Country of Conf., pp. xxx-xxx (YEAR).*example*

[4] Popescu
M., Staton D.A., *Thermal aspects in power traction motors with
permanent magnets*, Proceedings of XXIII Symposium Electromagnetic
Phenomena in Nonlinear Circuits, Pilsen, Czech Republic, pp. 35-36
(2016).**Book, book chapter and manual**

[5] Author1 A.,
Author2 A.B., *Title of book*, Name of the publisher (YEAR).*example*

[5]
Zienkiewicz O., Taylor R.L., *Finite Element method*, McGraw-Hill
Book Company (2000).**Patent **

[6] Author1 A., Author2
A., *Title of patent*, European Patent, EP xxx xxx (YEAR).*example*

[6]
Piech Z., Szelag W., *Elevator brake with magneto-rheological fluid*,
European Patent, EP 2 197 774 B1 (2011).**Thesis**

[7]
Author A., *Title of thesis*, PhD Thesis, Department, University,
City of Univ. (YEAR).*example*

[7] Driesen J., *Coupled
electromagnetic-thermal problems in electrical energy transducers*,
PhD Thesis, Faculty of Applied Science, K.U. Leuven, Leuven (2000).**For
on electronic forms**

[8] Author A., *Title of article*, in
[Title of Conference, record as it appears on the copyright page], ©
[applicable copyright holder of the Conference Record] (copyright year),
doi: [DOI number]. *example*

[8] Kubo M., Yamamoto Y., Kondo
T., Rajashekara K., Zhu B., *Zero-sequence current suppression for
open-end winding induction motor drive with resonant controller*,in
IEEE Applied Power Electronics Conference and Exposition (APEC), © APEC
(2016), doi: 10.1109/APEC.2016.7468259 **Website**

[9]
http://www.aee.put.poznan.pl, accessed April 2010.

**Proofs: **

Authors will receive proofs for correction, which should be returned promptly. All joint contributions must indicate the name and address of the authors to whom proofs should be sent.,

**Fees for printing the papers in Archives of Electrical
Engineering: **

AEE is published in Open Access, which means that all articles are
available on the internet to all users immediately upon publication free
of charge for the readers. Authors will be asked to a declaration that
they are ready to cover the costs of printing their article.__The
fee for the publication of an article in the AEE journal is 200 Euro.__

**Abstracting & Indexing: **

Archives of Electrical Engineering is covered by the following services:

- Arianta
- Baidu Scholar
- BazTech
- Celdes
- CNKI Scholar (China National Knowledge Infrastucture)
- CNPIEC
- DOAJ
- EBSCO - TOC Premier
- EBSCO (relevant databases)
- EBSCO Discovery Service
- Elsevier - Compendex
- Elsevier - Engineering Village
- Elsevier - SCOPUS
- Genamics JournalSeek
- Google Scholar
- ICI Journals Master List
- Inspec
- J-Gate
- Naviga (Softweco)
- POL-Index
- Primo Central (ExLibris)
- ProQuest - Advanced Technologies Database with Aerospace
- ProQuest - Electronics and Communications Abstracts
- ProQuest - Engineering Journals
- ProQuest - High Tech Research Database
- ProQuest - Illustrata: Technology
- ProQuest - SciTech Journals
- ProQuest - Technology Journals
- ProQuest - Technology Research Database
- SCImago (SJR)
- Summon (Serials Solutions/ProQuest)
- TDOne (TDNet)
- TEMA Technik und Management
- Thomson Reuters - Emerging Sources Citation Index
- Ulrich's Periodicals Directory/ulrichsweb
- WorldCat (OCLC)

Archives of Electrical Engineering jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0.

Archives of Electrical Engineering is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0.