Nauki Techniczne

Archives of Acoustics

Zawartość

Archives of Acoustics | 2014 | vol. 39 | No 2 |

Abstrakt

In this study, music teachers' exposure to sound was tested by measuring the A-weighted equivalent sound pressure level (SPL), the A-weighted maximum SPL and the C-weighted peak SPL. Measurements were taken prior to and after acoustic treatment in four rooms during classes of trumpet, saxophone, French horn, trombone and percussion instruments. Results showed that acoustic treatment affects the exposure of music teachers to sound. Daily noise exposure levels (LEX, 8 h) for all teachers exceeded a limit of 85 dB while teaching music lessons prior to room treatment. It was found that the LEX, 8 h values ranged from 85.8 to 91.6 dB. The highest A-weighted maximum SPL and C-weighted peak SPL that music teachers were exposed to were observed with percussion instruments (LAmax = 110.4 dB and LCpeak = 138.0 dB). After the treatments, daily noise exposure level decreased by an average of 5.8, 3.2, 3.0, 4.2 and 4.5 dB, respectively, for the classes of trumpet, saxophone, French horn, trombone and drums, and did not exceed 85 dB in any case.

Przejdź do artykułu

Abstrakt

The paper presents application of Taguchi method in optimizing the sound transmission loss through sandwich gypsum constructions and those comprising of masonry concrete blocks and gypsum boards in order to investigate the relative influence of the various parameters affecting the sound transmission loss. The application of Taguchi method for optimizing sound transmission loss has been rarely reported. The present work uses the results analytically predicted on “Insul” software for various sandwich material configurations as desired by each experimental run in an L8 orthogonal array. The relative importance of the parameters on single-number rating, Rw (C, Ctr) is evaluated in terms of percentage contribution using Analysis of Variance (ANOVA). The ANOVA method reveals that type of studs, steel stud frame and number of gypsum layers attached are the key factors controlling the sound transmission loss characteristics of sandwich multi-layered constructions.

Przejdź do artykułu

Abstrakt

This paper presents the measurement of vibrational properties of sundatang soundboard. Sundatang is a plucked stringed traditional musical instrument that is popular among the Kadazandusun communities in Sabah, Malaysia. The vibrational properties of the soundboard are measured using CADA-X impact hammering system in a condition where the instrument is without any string. There are two types of sundatang used in this study; one made from acacia and the other from vitex wood. In this measurement, frequency response functions (FRFs) and modal parameters of the top plate and back plate of this instrument are obtained. It is found that in free edge, fundamental frequency of both plates of acacia sundatang is greater than the vitex sundatang in a range of 112 Hz to 230 Hz. However, in clamped edge (attached to its ribs), it was modified to a lower frequency and closer to each other in the range of 55 Hz to 59 Hz. Another finding is the detection of the excitation of similar mode shape at different resonance frequencies. This phenomenon is termed as Different State of Mode (DSM) which is observed may be because the number of testing points is not enough. Findings of this study provide important information to the study of quality development of this instrument

Przejdź do artykułu

Abstrakt

In industrial processes electrical motors are serviced after a specific number of hours, even if there is a need for service. This led to the development of early fault diagnostic methods. Paper presents early fault diagnostic method of synchronous motor. This method uses acoustic signals generated by synchronous motor. Plan of study of acoustic signal of synchronous motor was proposed. Two conditions of synchronous motor were analyzed. Studies were carried out for methods of data processing: Line Spectral Frequencies and K-Nearest Neighbor classifier with Minkowski distance. Condition monitoring is useful to protect electric motors and mining equipment. In the future, these studies can be used in other electrical devices.

Przejdź do artykułu

Abstrakt

The authors focus their attention on the analysis of the probability density function of the equivalent noise level, in the context of a determination of the uncertainty of the obtained results in regard to the control of environmental acoustic hazards. In so doing, they discuss problems of correctness in the applicability of the classical normal distribution for the estimation of the expected interval value of the equivalent sound level. The authors also provide a set of procedures with respect to its derivation, based upon an assumption of the determined distribution of the measurement results. The obtained results then create the plane for the correct uncertainty calculation of the results of the determined controlled environmental acoustic hazard coefficient.

Przejdź do artykułu

Abstrakt

The assessment of the uncertainty of measurement results, an essential problem in environmental acoustic investigations, is undertaken in the paper. An attention is drawn to the - usually omitted - problem of the verification of assumptions related to using the classic methods of the confidence intervals estimation, for the controlled measuring quantity.

Especially the paper directs attention to the need of the verification of the assumption of the normal distribution of the measuring quantity set, being the base for the existing and binding procedures of the acoustic measurements assessment uncertainty. The essence of the undertaken problem concerns the binding legal and standard acts related to acoustic measurements and recommended in: 'Guide to the expression of uncertainty in measurement' (GUM) (OIML 1993), developed under the aegis of the International Bureau of Measures (BIPM). The model legitimacy of the hypothesis of the normal distribution of the measuring quantity set in acoustic measurements is discussed and supplemented by testing its likelihood on the environment acoustic results.

The Jarque-Bery test based on skewness and flattening (curtosis) distribution measures was used for the analysis of results verifying the assumption. This test allows for the simultaneous analysis of the deviation from the normal distribution caused both by its skewness and flattening. The performed experiments concerned analyses of the distribution of sound levels: LD, LE, LN, LDWN, being the basic noise indicators in assessments of the environment acoustic hazards.

Przejdź do artykułu

Abstrakt

This paper presents a relationship between Auditory Display (AD) and the domains of music and acoustics. First, some basic notions of the Auditory Display area are shortly outlined. Then, the research trends and system solutions within the fields of music technology, music information retrieval and music recommendation and acoustics that are within the scope of AD are discussed. Finally, an example of AD solution based on gaze tracking that may facilitate music annotation process is shown. The paper concludes with a few remarks about directions for further research in the domains discussed.

Przejdź do artykułu

Abstrakt

Stealth in military sonars applications may be ensured through the use of low power signals making them difficult to intercept by the enemy. In recent years, silent sonar design has been investigated by the Department of Marine Electronic Systems of the Gdansk University of Technology. This article provides an analysis of how an intercept sonar operated by the enemy can detect silent sonar signals. To that end a theoretical intercept sonar model was developed with formulas that can numerically determine the intercept ranges of silent sonar sounding signals. This was tested for a variety of applications and water salinities. Because they are also presented in charts, the results can be used to compare the intercept ranges of silent sonar and traditional pulse sonar.

Przejdź do artykułu

Abstrakt

In this paper a sample rate conversion algorithm which allows for continuously changing resampling ratio has been presented. The proposed implementation is based on a variable fractional delay filter which is implemented by means of a Farrow structure. Coefficients of this structure are computed on the basis of fractional delay filters which are designed using the offset window method. The proposed approach allows us to freely change the instantaneous resampling ratio during processing. Using such an algorithm we can simulate recording of audio on magnetic tape with nonuniform velocity as well as remove such distortions. We have demonstrated capabilities of the proposed approach based on the example of speech signal processing with a resampling ratio which was computed on the basis of estimated fundamental frequency of voiced speech segments.

Przejdź do artykułu

Abstrakt

For many adaptive noise control systems the Filtered-Reference LMS, known as the FXLMS algorithm is used to update parameters of the control filter. Appropriate adjustment of the step size is then important to guarantee convergence of the algorithm, obtain small excess mean square error, and react with required rate to variation of plant properties or noise nonstationarity. There are several recipes presented in the literature, theoretically derived or of heuristic origin.

This paper focuses on a modification of the FXLMS algorithm, were convergence is guaranteed by changing sign of the algorithm steps size, instead of using a model of the secondary path. A TakagiSugeno-Kang fuzzy inference system is proposed to evaluate both the sign and the magnitude of the step size. Simulation experiments are presented to validate the algorithm and compare it to the classical FXLMS algorithm in terms of convergence and noise reduction.

Przejdź do artykułu

Abstrakt

A numerical method is developed for estimating the acoustic power of any baffled planar structure, which is vibrating with arbitrary surface velocity profile. It is well known that this parameter may be calculated with good accuracy using near field data, in terms of an impedance matrix, which is generated by the discretization of the vibrating surface into a number of elementary radiators. Thus, the sound pressure field on the structure surface can be determined by a combination of the matrix and the volume velocity vector. Then, the sound power can be estimated through integration of the acoustic intensity over a closed surface. On the other hand, few works exist in which the calculation is done in the far field from near field data by the use of radiation matrices, possibly because the numerical integration becomes complicated and expensive due to large variations of directivity of the source. In this work a different approach is used, based in the so-called Propagating Matrix, which is useful for calculating the sound pressure of an arbitrary number of points into free space, and it can be employed to estimate the sound power by integrating over a finite number of pressure points over a hemispherical surface surrounding the vibrating structure. Through numerical analysis, the advantages/disadvantages of the current method are investigated, when compared with numerical methods based on near field data. A flexible rectangular baffled panel is considered, where the normal velocity profile is previously calculated using a commercial finite element software. However, the method can easily be extended to any arbitrary shape. Good results are obtained in the low frequency range showing high computational performance of the method. Moreover, strategies are proposed to improve the performance of the method in terms of both computational cost and speed.

Przejdź do artykułu

Abstrakt

The paper shows the new method for noise reduction in external gear pumps based on the analysis of the pressure in inter teeth volumes. The simulation model and measurement results of pressure changes in the inter teeth volume has been presented. Based on simulation results an additional volume has been obtained, which is connected to the inter teeth volume (decompression filter volume). Due this additional volume the build down processes in the pump are longer and the pressure overdue in the inter teeth volumes are smaller. This leads to the reduction of the dynamical excitation forces inside the pump and noise, especially in the higher frequency rangeI.

Przejdź do artykułu

Abstrakt

The parenchyma cellulose isolated from bagasse pith was used as an alternative resource for preparation of water-soluble cellouronic acid sodium salt (CAS). The influence of ultrasound treatment on the cellulose was investigated for obtaining CAS by regioselective oxidization using 4-acetamide-TEMPO and NaClO with NaClO2 as a primary oxidant in an aqueous buffer at pH 6.0. The yield, carboxylate content and polymerization degree (DP) of CAS were measured as a function of ultrasonic power, agitating time and cellulose consistency by an orthogonal test. The ultrasound-treated conditions were further improved by discussion of ultrasonic power, the most important factor influencing the yield and DP. An optimized CAS yield of 72.9% with DP value (DPv) of 212 was found when the ultrasonic strength is 550 W, agitating time is 3 h and cellulose consistency is 2.0%. The oxidation reactivity of cellulose was improved by ultrasonic irradiation, whereas no significant changes in crystallinity of cellulose were measured after ultrasonic treatment. Moreover, the ultrasound treatment has a greater effect on yielding CAS from parenchyma cellulose than from bagasse fibrous' one. The CAS was further characterized by Fourier transform infrared spectroscopy (FT-IR) and Scanning electron microscopy (SEM).

Przejdź do artykułu

Abstrakt

This paper presents and compares microphone calibration methods for the simultaneous calibration of small electret microphones in a wave guide. The microphones are simultaneously calibrated to a reference microphone both in amplitude and phase. The calibration procedure is formulated on the basis of the damped plane wave propagation equation, from which the acoustics field along the wave guide is predicted, using several reference measurements. Different calibration models are presented and the methods were found to be sensitive to the formulation, as well as to the number of free parameters used during the reconstruction of the wave-field. The wave guide model based on five free parameters was found to be the preferred method for this type of calibration procedure.

Przejdź do artykułu

Abstrakt

Flow fields could be of great interest in the study of sound propagation in aeroengines. For ducts with rigid boundaries, the fluid-resonant category may contribute significantly to unwanted noise. An understanding of the multi-modal propagation of acoustic waves in ducts is of practical interest for use in the control of noise in, for example, aero-engines, automotive exhaust and heating or ventilation systems. The purpose of our experiments was to test the acoustic energy transmission of duct modes based on studies carried out by the sound intensity technique. Sound intensity patterns in circular duct are discussed of modal energy analysis with particular reference to proper orthogonal decomposition and dynamic mode decomposition. The authors try to justify some advantages of the sound intensity experimental research in this area. In the paper, the wide-band sound signal propagated from source approximated with loudspeaker in hard-walled duct is imaged using a sound intensity - based approach. For a simple duct geometry, the sound intensity field is examined visually and by performing a modal decomposition greater insight into the acoustic structures is obtained. The image of sound intensity fields below and above “cut-off” frequency region are found to compare acoustic modes which might resonate in duct.

Przejdź do artykułu

Redakcja

Editorial Board
Editor-in-Chief
Andrzej Nowicki (Institute of Fundamental Technological Research PAN, Warszawa)
Deputy Editor-in-Chief
Barbara Gambin (Institute of Fundamental Technological Research PAN, Warszawa)
Associate Editors
Genaral linear acoustics and physical acoustics
• Wojciech P. Rdzanek (University of Rzeszów, Rzeszów)
• Anna Snakowska (AGH University of Science and Technology, Kraków)
Architectural acoustics
• Tadeusz Kamisiński (AGH University of Science and Technology, Kraków)
Musical acoustics and psychological acoustics
• Andrzej Miśkiewicz (The Fryderyk Chopin University of Music, Warszawa)
• Anna Preis (Adam Mickiewicz University, Poznań)
Underwater acoustics and nonlinear acoustics
• Grażyna Grelowska (Gdańsk University of Technology, Gdańsk)
Speech, Computational acoustics and signal processing
• Ryszard Gubrynowicz (Polish-Japanese Institute of Information Technology, Warszawa)
Ultrasonics, transducers and instrumentation
• Krzysztof Opieliński (Wrocław University of Technology, Wrocław)
Electroacoustics
• Jan Żera (Warsaw University of Technology, Warszawa)
Noise control and environmental acoustics
• Jan Adamczyk (AGH University of Science and Technology, Kraków)
• Mirosław Meissner (Institute of Fundamental Technological Research PAN, Warszawa)
• Janusz Kompała (Central Mining Institute, Katowice)
Secretary
• Izabela Ewa Mika

Kontakt

Archives of Acoustics
Institute of Fundamental Technological Research
5b Pawińskiego Str.,
02-106 Warszawa, Poland
Phone: (48) (22) 826 12 81 ext. 206
Fax: (48) (22) 826 98 15
Email: akustyka@ippt.gov.pl

Support Contact
Paweł Witkowski
Email: intools@intools.pl

Instrukcje dla autorów

Author Guidelines
• Manuscripts intended for publication in Archives of Acoustics should be submitted in pdf format by an on-line procedure.
• Manuscript should be original, and should not be submitted either previously or simultaneously elsewhere, neither in whole, nor in part.
• Submitted papers must be written in good English and proofread by a native speaker.
• Basically, the papers should not exceed 40 000 typographic signs.
• Postal addresses, affiliations and email addresses for each author are required.
• Detailed information see Article Requirements.
• Manuscript should be accompanied by a cover letter containing the information:
o why the paper is submitted to ARCHIVES OF ACOUSTICS,
o suggestion on the field of acoustics related to the topic of the submitted paper,
o the statement that the manuscript is original, the submission has not been previously published, nor was sent to another journal for consideration,
o 3–5 names of suggested reviewers together with their affiliations, full postal and e-mail addresses; at least 3 suggested reviewers should be affiliated with other scientific institutions than the affiliations of the authors,
o author’s suggestion to classification of the paper as the research paper, review paper or technical note.

Article Requirements
1. At submission time only a PDF file is required. After acceptance, authors must submit all source material (see information about Figures). Authors can use their preferred manuscript-preparation software. The journal itself is produced in LaTeX, so accepted articles will be converted to LaTeX at production time.
2. The title of the paper should be as short as possible.
3. Full names and surnames should be given.
4. The full postal address of each affiliation, including the country name should be provided. Affiliations should contain the full postal address, as well as an e-mail address of one author designated as corresponding author.
5. The text should be preceded by a concise abstract (less than 200 words).
6. Keywords should be given.
7. The formulae to be numbered are those referred to in the paper, as well as the final formulae.
8. All notations should be written very distinctly.
9. References in the text (author(s) and year of publication) are to be cited between parentheses.
Items appearing in the reference list should be complete, including surname and the initials of the first name of the author, the full title of the paper/book in English followed by the information on the original paper language. In case of a book, the publisher's name, the place and year of publication should be given. In case of a periodical, the full title of the periodical, consecutive volume number, current issue number, pages, and year of publication should be given. All references in the bibliography should be cited in the text, and arranged in alphabetical order by authors' last name.
For more information on references see http://acoustics.ippt.gov.pl/public/Instructions.pdf.
10. Figures must be of publication quality. Each figure should be saved in separate file and captioned and numbered so that it can float. After acceptance, Authors will need to submit the original source files for all photos, diagrams and graphs in manuscript.
For diagrams and graphs vector EPS or vector PDF files are the most useful. Make sure that what you're saving is vector graphics and not a bitmap. Please also include the original data for any plots. This is particularly important if you are unable to save Excel-generated plots in vector format. Saving them as bitmaps is not useful; please send the Excel (.xls) spreadsheets instead.
Photographs should be high-quality – with resolution no lower than 300 dpi.
Pack all figure files into a single archive (zip, tar, rar or other format) and then upload on the magazine web site.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji