Nauki Techniczne

Opto-Electronics Review

Zawartość

Opto-Electronics Review | 2019 | vol. 27 | No 3 |

Abstrakt

A new approach to passive electromagnetic modelling of coupled–cavity quantum cascade lasers is presented in this paper. One of challenges in the rigorous analysis of such eigenvalue problem is its large size as compared to wavelength and a high quality factor, which prompts for substantial computational efforts. For those reasons, it is proposed in this paper to consider such a coupled-cavity Fabry-Perot resonant structure with partially transparent mirrors as a two-port network, which can be considered as a deterministic problem. Thanks to such a novel approach, passive analysis of an electrically long laser can be split into a cascade of relatively short sections having low quality factor, thus, substantially speeding up rigorous electromagnetic analysis of the whole quantum cascade laser. The proposed method allows to determine unequivocally resonant frequencies of the structure and the corresponding spectrum of a threshold gain. Eventually, the proposed method is used to elaborate basic synthesis rules of coupled–cavity quantum cascade lasers.

Przejdź do artykułu

Autorzy i Afiliacje

M. Krysicki
B. Salski
P. Kopyt

Abstrakt

We present an overview of our technological achievements in the implementation of detector structures based on mercury cadmium telluride (MCT) heterostructures and nanostructures for IR and THz spectral ranges. We use a special MBE design set for the epitaxial layer growth on (013) GaAs substrates with ZnTe and CdTe buffer layers up to 3” in diameter with the precise ellipsometric monitoring in situ. The growth of MCT alloy heterostructures with the optimal composition distribution throughout the thickness allows for the realization of different types of many-layered heterostructures and quantum wells to prepare the material for fabricating single- or dual-band IR and THz detectors.

We also present the two-color broad-band bolometric detectors based on the epitaxial MCT layers that are sensitive in 150–300-GHz subterahertz and infrared ranges from 3 to 10 μm, which operate at the ambient or liquid nitrogen temperatures as photoconductors, as well as the detectors based on planar HgTe quantum wells. The design and dimensions of THz detector antennas are optimized for reasonable detector sensitivity values. A special diffraction limited optical system for the detector testing was designed and manufactured. We represent here the THz images of objects hidden behind a plasterboard or foam plastic packaging, obtained at the radiation frequencies of 70, 140, and 275 GHz, respectively.

Przejdź do artykułu

Autorzy i Afiliacje

S.A. Dvoretsky
N.N. Mikhailov
V.G. Remesnik
Yu.G. Sidorov
V.A. Shvets
D.G. Ikusov
V.S. Varavin
J.V. Gumenjuk-Sichevska
A.G. Golenkov
I.O. Lysiuk
Z.F. Tsybrii
A.V. Shevchik-Shekera
F.F. Sizov
A.V. Latyshev
A.L. Aseev

Abstrakt

The paper presents a new construction of an optical pulse amplitude monitoring unit (PAMU) used in a transceiver of Free Space Optics. It consists of a buffer, constant fraction discriminator (CFD), delay line, and a sample and hold (S&H) circuit. In the design FSO system, the PAMU provides to monitor transmitted and received optical pulses with duration of few ns. Using this device, there is no need to apply complicated and expensive digitizing systems. The unique aspect of its construction is to control S&H circuit using the CFD. The lab model of this unit allows to perform tests to define some virtues of constant fraction and leading-edge discriminators. The results were implemented in optical signal monitoring of FSO system. The unit was prepared to cooperate with two different detection modules. Using this setup, it was possible, e.g. to determine operation characteristics of FSO transmitter, identify interruption of transmission, and control light power to provide high safety of work.

Przejdź do artykułu

Autorzy i Afiliacje

K. Achtenberg
J. Mikołajczyk
D. Szabra
A. Prokopiuk
Z. Bielecki

Abstrakt

The emergence of solar cells on flexible and bendable substrates has made the printing process a ubiquitous tool for the fabrication of these devices. The various printing techniques available now such as inkjet, screen and flexography offer cost- effectiveness, user-friendliness and suitability for mass production. While downscaling the fill factor and efficiency of organic solar cells. A multilayered structure, the combination of different printing techniques avails the variety of thickness and resolution required for each layer in the production of an organic solar cell. In this review article, we discuss the suitability of the inkjet and screen printing processes to produce organic solar cells. We also discuss various challenges involved in the fabrication of organic solar cells using these two techniques and the possible solutions for the same. We also provide an analogy that both processes share. Further, we consider future possibilities of combining these printing technologies to produce organic solar cells to improve device performance.

Przejdź do artykułu

Autorzy i Afiliacje

S. Ganesan
S. Mehta
D. Gupta

Redakcja

Opto-Electronics Review - Editorial Board

Editor-in-Chief:
L. R. JAROSZEWICZ, Military University of Technology, Warsaw, Poland

Deputy Editor-in Chief:
P. MARTYNIUK, Military University of Technology, Warsaw, Poland


Board of Co-editors:

Optical Design and Applications
V.O. ANGELSKY, Chernivtsi National University, Chernivtsi, Ukraine

Image Processing
M. JÓŹWIK, Warsaw University of Technology, Warsaw, Poland

Metamaterials
T. ANTOSIEWICZ, Warsaw University, Warsaw, Poland

Modelling of Optoelectronic Devices. Semiconductor Lasers
M. DEMS, Łódź Technical University, Łódź, Poland

Optoelectronics Materials
D. DOROSZ, AGH University of Science and Technology, Cracow, Poland

Micro-Opto-Electro-Mechanical Systems
T.P. GOTSZALK, Wrocław University of Technology, Wrocław, Poland

Infrared Physics and Technology <
M. KOPYTKO, Military University of Technology, Warsaw, Poland

Technology and Fabrication of Optoelectronic Devices
J. MUSZALSKI, Institute of Electron Technology, Warsaw, Poland

Photonic Crystals
K. PANAJOTOV, Vrije Universiteit Brussels, Brussels, Belgium

Laser Physics, Technology and Applications
J. ŚWIDERSKI, Warsaw University of Technology, Warsaw, Poland

Optical Sensors and Applications
M. ŚMIETANA, Warsaw University of Technology, Warsaw, Poland

Photovoltaics
A. IWAN, Military Institute of Engineer Technology, Wroclaw, Poland

Biomedical Optics and Photonics
A. LIEBERT, Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland


International Editorial Advisory Board


D. BIMBERG, Technische Universitaet Berlin, Berlin, Germany

F. CAPASSO, Harvard University, Cambridge, USA

A.I. DIROCHKA, Production Center ORION, Moscow, Russia

P.G. ELISEEV, University of New Mexico, Albuquerque, USA

P. HARING−BOLIVAR, University of Siegen, Siegen, Germany

M. HENINI, University of Nottingham, Nottingham, England

B. JASKORZYNSKA, Royal Institute of Technology, Kista, Sweden

M. KIMATA, Ritsumeikan University, Shiga, Japan

R. KLETTE, University of Auckland, Auckland, New Zealand

S. KRISHNA, University of New Mexico, Albuquerque, USA

H.C. LIU, Shanghai Jiao Tong University, Shanghai, China

J. MISIEWICZ, Wrocław University of Technology, Wrocław, Poland

E. OZBAY, Bilkent University, Ankara, Turkey

J.G. PELLEGRINI, Night Vision and Electronic Sensors Directorate, Fort Belvoir, USA

M. RAZEGHI, Northwestern University, Evanston, USA

A. ROGALSKI, Military University of Technology, Warsaw, Poland

P. RUSSELL, Max Planck Institute for the Science of Light, Erlangen, Germany

V. RYZHII, University of Aizu, Aizu, Japan

C. SIBILIA, Universita' di Roma “La Sapienza”, Roma, Italy

A. TORRICELLI, Politecnico di Milano, Milano, Italy

T. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

W. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

S.−T. WU, University of Central Florida, Orlando, USA

Y.P. YAKOVLEV, Ioffe Physicotechnical Institute, St. Petersburg, Russia

J. ZIELŃSKI, Military University of Technology, Warsaw, Poland


Language Editor

J. Kulesza, e-mail: jolanta.kulesza@wat.edu.pl


Technical Editors:

R.Podraza, e-mail: renata.podraza@wat.edu.pl

E.Sadowska, e-mail: elzbieta.sadowska@wat.edu.pl

Kontakt

Military University of Technology,

Gen. Sylwestra Kaliskiego St. 2,

00 – 908 Warsaw, Poland

opelre@wat.edu.pl

Instrukcje dla autorów

Polityka Open Access

Opto-Electronics Review is an open access journal with all content available with no charge for readers in full text version. The journal content is available under the licencse CC BY-SA 4.0

Dodatkowe informacje

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encourage. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Current Contents - Physical, Chemical & Earth Sciences

Current Contents - Engineering, Technology & Applied Sciences

Science Citation Index Expanded

Journal Citation Reports - Science Edition

Scopus

INSPEC

Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Authorship of the paper: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study.

Originality and plagiarism: The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others, that this has been appropriately cited or quoted.

Data access and retention: Authors may be asked to provide the raw data in connection with a paper for editorial review, and should be prepared to provide public access to such data.

Multiple, redundant or concurrent publication: An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication.

Acknowledgement of sources: Proper acknowledgment of the work of others must always be given.

Disclosure and conflicts of interest: All submissions must include disclosure of all relationships that could be viewed as presenting a potential conflict of interest.

Fundamental errors in published works: When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Reporting standards: Authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance.

Hazards and human or animal subjects: Statements of compliance are required if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, or if it involves the use of animal or human subjects.

Use of patient images or case details: Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji