Applied sciences

Opto-Electronics Review


Opto-Electronics Review | 2018 | vol. 26 | No 1 |

Download PDF Download RIS Download Bibtex


Transparent Al doped ZnO nanocrystalline films with a crystallite size less than 19 nm are obtained by spray pyrolysis. Band gap increases monotonically from 3.16 to 3.31 eV with increasing aluminum dopant up to 1.56 at.% facilitating increasing width of a transmission window in addition to the band gap tuning of 4.74% which compares favorably well with literature. UV emission with continuously increasing intensity is obtained which reflects on the good crystalline quality of the films. Also the defect emissions are suppressed remarkably as the dopant Al concentration increases in ZnO. The band gap tuning by quite small increment in dopant amount makes the present films, much attractive for the fabrication of light emitting devices with a much sought-for benefit of large area fabrication. FESEM shows the surface is granular with grain size lying in the range of 20–35 nm and EDX confirms the presence of Al in the doped samples.

Go to article

Authors and Affiliations

N. Kumar
A. Srivastava
Download PDF Download RIS Download Bibtex


In the present work TiO2 nanoparticles (NPs) have been dispersed into three different nematic liquid crystals (2020, 1823A and 1550C) in different concentration. The value of the birefringence (Δn) has been calculated by the transmitted intensity method at a 632.8 nm wavelength. NLC 2020 used in the present study is a high birefringent material (Δn = 0.44), NLC 1550C is a low birefringent material (Δn = 0.067) and NLC 1823A is a mid birefringent material (Δn = 0.14). An increased value of birefringence has been found after dispersion of TiO2 NPs in all three NLCs but this increment depends upon the concentration of the dopant material, temperature range and chemical character of the mixtures. It is suggested that this LC materials can be applicable in making of phase shifters, compensators and many more photonic devices.

Go to article

Authors and Affiliations

G. Pathak
R. Katiyar
K. Agrahari
A. Srivastava
R. Dabrowski
K. Garbat
R. Manohar
Download PDF Download RIS Download Bibtex


Photofield emission from SiGe nanoislands formed by molecular beam epitaxy (MBE) have been investigated. Two types of nanoislands, namely the domes and pyramids with different heights, have been addressed. It was found that the arrays of SiGe nanoislands exhibited a low onset voltage for field emission. The increase of emission current and the decrease of the curve slope in Fowler-Nordheim coordinates under green light illumination have been revealed. Electron field emission and photoemission from SiGe nanoislands have been explained based on the energy band diagram of Si-Ge heterostructure and some energy barriers have been determined.

Go to article

Authors and Affiliations

O. Steblova
A. Evtukh
O. Yilmazoglu
V. Yukhymchuk
H. Hartnagel
H. Mimura
Download PDF Download RIS Download Bibtex


An interferometric structure based on a Dual-Resonance Long-Period Grating (DRLPG) within a Fiber Loop Mirror (FLM) is presented in this paper. Its purpose is to measure the refractive index (RI) of liquid analytes. The grating is the RI sensing probe, while the FLM serves as a band-pass filter. Due to the high extinction ratio of the FLM, amplitude measurements can be obtained, allowing implementation of the differential interrogation method to establish the sensitivity of the device. The use of a polarization controller makes it possible to fine-tune the interferometric peaks with respect to the two notches of the DRLPG. Precisely aligned configuration produces a maximum sensitivity of 3871.5 dB/RIU within the RI range of 1.3333 up to 1.3419 with linear sensor response.

Go to article

Authors and Affiliations

R. Zawisza
T. Eftimov
P. Mikulic
Y. Chinifooroshan
A. Celebańska
W.J. Bock
L.R. Jaroszewicz
Download PDF Download RIS Download Bibtex


Self-swept erbium fiber laser emitting around 1.56 μm is reported in detail. Both sweep directions were registered: pointing toward longer and shorter wavelengths, redshift and blueshift sweeping, respectively. We describe method of determining the direction of the wavelength drift using the monochromator based optical spectrum analyzer. Possible root for this sweeping regime, i.e., the gain modulation along active fiber, is discussed with the help of a simple model calculating the overall cavity gain that can predict the direction of the laser wavelength sweeping.

Go to article

Authors and Affiliations

P. Navratil
P. Peterka
P. Vojtisek
I. Kasik
J. Aubrecht
P. Honzatko
V. Kubecek
Download PDF Download RIS Download Bibtex


We have presented dielectric and conductivity studies of two liquid crystal (LC) compounds- p-octyloxybenzoic acid (8OBA) and p-decyloxybenzoic acid (10OBA). Dielectric permittivity study of those compounds gives the evidence of space charge polarization and ionic conductance in the samples. Dielectric permittivity is found to be the highest for 8OBA than 10OBA. Both compounds found to exhibit positive dielectric anisotropy. Splay elastic constant as a function of temperature has also been investigated. Frequency and temperature dependent electrical conductivity of these two LC compounds have been studied in detail. Activation energy has been estimated from both dc and ac conduction process.

Go to article

Authors and Affiliations

S. Patari
A. Nath
Download PDF Download RIS Download Bibtex


Dielectric properties of a nematic liquid crystal (NLC) mixture ZhK-1282 were investigated in the frequency range of 102–106 Hz and a temperature range of −20 to 80°С. On the basis of the Debye’s relaxation polarization model dielectric spectra of temperature dependence of the orientational relaxation time τ and the dielectric strength δe were numerically approximated at the parallel orientation of a molecular director relative to alternating electric field. Influence of ester components in the mixture plays crucial role in relaxation processes at low temperature and external field frequency. The activation energy of the relaxation process of a rotation of molecules around their short axis was measured in a temperature interval of −20 to  +15°С in which the dispersion of a longitudinal component of the dielectric constant takes place. The energy of potential barrier for polar molecules rotation in the mesophase was calculated. The value of the transition entropy from the nematic to isotropic phase was obtained from this calculation. The values of the coefficient of molecular friction and rotational diffusion were obtained by different methods. The experimental data obtained are in a satisfactory agreement with the existing theoretical models.

Go to article

Authors and Affiliations

D.N. Chausov
А.D. Kurilov
V.V. Belyaev
S. Kumar
Download PDF Download RIS Download Bibtex


A highly sensitive photonic crystal fiber based on the surface plasmon resonance (PCF-SPR) biosensor for the detection of the density alteration in non-physiological cells (DANCE) is described. Human acute leukemia cells are determined by the discontinuous sucrose gradient centrifugation (DSGC) in which the cells are separated into several bands. The separated cells with different intracellular densities and refractive indexes (RI) ranging from 1.3342 to 1.3344 are distinguished in situ by means of the differential transmission spectrum. The biosensor shows a maximum amplitude sensitivity of 2000 nm/RIU and resolution as high as 5 × 10−5 RIU. According to the wavelength interrogation method, a maximum spectral sensitivity of 9000 nm/RIU in the sensing range between 1.33 and 1.53 is achieved, corresponding to a resolution as high as 1.11 × 10−5 RIU for the biosensor. The proposed PCF-SPR biosensor has promising application in biological and biochemical detection.

Go to article

Authors and Affiliations

F. Wang
Z. Sun
C. Liu
T. Sun
P.K. Chu
Download PDF Download RIS Download Bibtex


We have numerically studied different designs of technologically feasible microstructured fibers with a germanium-doped core in order to obtain normal dispersion reaching possibly far in the mid infrared. Hexagonal, Kagome and the combination of both geometries were numerically examined with respect to different constructional parameters like pitch distance, filling factor of air holes, number of layers surrounding the core, and level of germanium doping in the core. Our analysis showed that the broadest range of normal dispersion reaching 2.81 μm, while keeping an effective mode area smaller than 30 μm2, was achieved for a hexagonal lattice and a 40 mol% GeO2 doped core. The proposed fibers designs can be used in generation of a normal dispersion supercontinuum reaching the mid-IR region.

Go to article

Authors and Affiliations

J. Biedrzycki
K. Tarnowski
W. Urbańczyk
Download PDF Download RIS Download Bibtex


In this article, we propose the realization of XNOR logic function by using all-optical XOR and NOT logic gates. Initially, both XOR and NOT gates are designed, simulated and optimized for high contrast outputs. T-shaped waveguides are created on the photonic crystal platform to realize these logic gates. An extra input is used to perform the inversion operation in the NOT gate. Inputs in both the gates are applied with out of phase so as to have a destructive interference between them and produce negligible intensity for logic ‘0'. The XOR and NOT gates are simulated using Finite Difference Time Domain method which results with a high contrast ratio of 55.23 dB and 54.83 dB, respectively at a response time of 0.136 ps and 0.1256 ps. Later, both the gates are cascaded by superimposing the output branch of the waveguide of XOR gate with the input branch of the waveguide of NOT gate so that it can be resulted with compact size for XNOR logic function. The resultant structure of XNOR logic came out with the contrast ratio of 12.27 dB at a response time of 0.1588 ps. Finally, it can be concluded that the proposed structures with fair output performance can suitably be applied in the design of photonic integrated circuits for high speed computing and telecommunication systems.

Go to article

Authors and Affiliations

E.H. Shaik
N. Rangaswamy
Download PDF Download RIS Download Bibtex


Properties of excitons confined to potential fluctuations due to indium distribution in the wetting layer which accompany self-assembled InAs/GaAs quantum dots are reviewed. Spectroscopic studies are summarized including time-resolved photoluminescence and corresponding single-photon emission correlation measurements. The identification of charge states of excitons is presented which is based on results of a theoretical analysis of interactions between the involved carriers. The effect of the dots’ environment on their optical spectra is also shown.

Go to article

Authors and Affiliations

A. Babiński

Editorial office

Opto-Electronics Review - Editorial Board

L. R. JAROSZEWICZ, Military University of Technology, Warsaw, Poland

Deputy Editor-in Chief:
P. MARTYNIUK, Military University of Technology, Warsaw, Poland

Board of Co-editors:

Optical Design and Applications
V.O. ANGELSKY, Chernivtsi National University, Chernivtsi, Ukraine

Image Processing
M. JÓŹWIK, Warsaw University of Technology, Warsaw, Poland

T. ANTOSIEWICZ, Warsaw University, Warsaw, Poland

Modelling of Optoelectronic Devices. Semiconductor Lasers
M. DEMS, Łódź Technical University, Łódź, Poland

Optoelectronics Materials
D. DOROSZ, AGH University of Science and Technology, Cracow, Poland

Micro-Opto-Electro-Mechanical Systems
T.P. GOTSZALK, Wrocław University of Technology, Wrocław, Poland

Infrared Physics and Technology <
M. KOPYTKO, Military University of Technology, Warsaw, Poland

Technology and Fabrication of Optoelectronic Devices
J. MUSZALSKI, Institute of Electron Technology, Warsaw, Poland

Photonic Crystals
K. PANAJOTOV, Vrije Universiteit Brussels, Brussels, Belgium

Laser Physics, Technology and Applications
J. ŚWIDERSKI, Warsaw University of Technology, Warsaw, Poland

Optical Sensors and Applications
M. ŚMIETANA, Warsaw University of Technology, Warsaw, Poland

A. IWAN, Military Institute of Engineer Technology, Wroclaw, Poland

Biomedical Optics and Photonics
A. LIEBERT, Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland

International Editorial Advisory Board

D. BIMBERG, Technische Universitaet Berlin, Berlin, Germany

F. CAPASSO, Harvard University, Cambridge, USA

A.I. DIROCHKA, Production Center ORION, Moscow, Russia

P.G. ELISEEV, University of New Mexico, Albuquerque, USA

P. HARING−BOLIVAR, University of Siegen, Siegen, Germany

M. HENINI, University of Nottingham, Nottingham, England

B. JASKORZYNSKA, Royal Institute of Technology, Kista, Sweden

M. KIMATA, Ritsumeikan University, Shiga, Japan

R. KLETTE, University of Auckland, Auckland, New Zealand

S. KRISHNA, University of New Mexico, Albuquerque, USA

H.C. LIU, Shanghai Jiao Tong University, Shanghai, China

J. MISIEWICZ, Wrocław University of Technology, Wrocław, Poland

E. OZBAY, Bilkent University, Ankara, Turkey

J.G. PELLEGRINI, Night Vision and Electronic Sensors Directorate, Fort Belvoir, USA

M. RAZEGHI, Northwestern University, Evanston, USA

A. ROGALSKI, Military University of Technology, Warsaw, Poland

P. RUSSELL, Max Planck Institute for the Science of Light, Erlangen, Germany

V. RYZHII, University of Aizu, Aizu, Japan

C. SIBILIA, Universita' di Roma “La Sapienza”, Roma, Italy

A. TORRICELLI, Politecnico di Milano, Milano, Italy

T. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

W. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

S.−T. WU, University of Central Florida, Orlando, USA

Y.P. YAKOVLEV, Ioffe Physicotechnical Institute, St. Petersburg, Russia

J. ZIELŃSKI, Military University of Technology, Warsaw, Poland

Language Editor

J. Kulesza, e-mail:

Technical Editors:

R.Podraza, e-mail:

E.Sadowska, e-mail:


Military University of Technology,

Gen. Sylwestra Kaliskiego St. 2,

00 – 908 Warsaw, Poland

Instructions for authors

Open Access policy

Opto-Electronics Review is an open access journal with all content available with no charge for readers in full text version. The journal content is available under the licencse CC BY-SA 4.0

Additional information

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encourage. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Current Contents - Physical, Chemical & Earth Sciences

Current Contents - Engineering, Technology & Applied Sciences

Science Citation Index Expanded

Journal Citation Reports - Science Edition



Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Authorship of the paper: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study.

Originality and plagiarism: The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others, that this has been appropriately cited or quoted.

Data access and retention: Authors may be asked to provide the raw data in connection with a paper for editorial review, and should be prepared to provide public access to such data.

Multiple, redundant or concurrent publication: An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication.

Acknowledgement of sources: Proper acknowledgment of the work of others must always be given.

Disclosure and conflicts of interest: All submissions must include disclosure of all relationships that could be viewed as presenting a potential conflict of interest.

Fundamental errors in published works: When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Reporting standards: Authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance.

Hazards and human or animal subjects: Statements of compliance are required if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, or if it involves the use of animal or human subjects.

Use of patient images or case details: Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper.

This page uses 'cookies'. Learn more