Nauki Techniczne

Opto-Electronics Review


Opto-Electronics Review | 2020 | vol. 28 | No. 3 |


Graphene applications in electronic and optoelectronic devices have been thoroughly and intensively studied since graphene discovery. Thanks to the exceptional electronic and optical properties of graphene and other two-dimensional (2D) materials, they can become promising candidates for infrared and terahertz photodetectors.

Quantity of the published papers devoted to 2D materials as sensors is huge. However, authors of these papers address them mainly to researches involved in investigations of 2D materials. In the present paper this topic is treated comprehensively with including both theoretical estimations and many experimental data.

At the beginning fundamental properties and performance of graphene-based, as well as alternative 2D materials have been shortly described. Next, the position of 2D material detectors is considered in confrontation with the present stage of infrared and terahertz detectors offered on global market. A new benchmark, so-called “Law 19”, used for prediction of background limited HgCdTe photodiodes operated at near room temperature, is introduced. This law is next treated as the reference for alternative 2D material technologies. The performance comparison concerns the detector responsivity, detectivity and response time. Place of 2D material-based detectors in the near future in a wide infrared detector family is predicted in the final conclusions.

Przejdź do artykułu

Autorzy i Afiliacje

A. Rogalski
M. Kopytko
P. Martyniuk


In this work, we present an extensive investigation of the effect of Al2O3 decoration on the morphological, structural and opto-electronic properties of a porous Si (Sip)/Cr2O3 composite. The Sip layers were prepared by the anodization method. Al2O3 and Cr2O3 thin films were deposited by physical vapour deposition. The morphological and micro-structural properties of Sip/Cr2O3/Al2O3 were studied using the scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction techniques. It was found that Al2O3 decoration with different concentration strongly affects the Sip/Cr2O3 microstructure mainly at the level of porosity. Variable angle spectroscopic ellipsometry demonstrates a strong correlation between optical constants (n and k) of Sip/Cr2O3/Al2O3 and microstructure properties. Dielectric properties of Sip/Cr2O3/Al2O3 such as electrical conductivity and conduction mechanism were explored using impedance spectroscopy over the temperature interval ranging from 340 to 410°C. A semiconductor to the metallic transition has been observed at high frequency.

Przejdź do artykułu

Autorzy i Afiliacje

M. Ghrib
B. Tlili
M. Razeg
R. Ouertani
M. Gaidi
H. Ezzaouia


In this paper, we present the electrical and electro-optical characterizations of an InAs/GaSb type-2 superlattice barrier photodetector operating in the full longwave infrared spectral domain. The fabricated detectors exhibited a 50% cut-off wavelength around 14 μm at 80 K and a quantum efficiency slightly above 20%. The dark current density was of 4.6 × 10 2 A/cm2 at 80 K and a minority carrier lateral diffusion was evaluated through dark current measurements on different detector sizes. In addition, detector spectral response, its dark current-voltage characteristics and capacitance-voltage curve accompanied by electric field simulations were analyzed in order to determine the operating bias and the dark current regimes at different biases. Finally, dark current simulations were also performed to estimate a minority carrier lifetime by comparing experimental curves with simulated ones.

Przejdź do artykułu

Autorzy i Afiliacje

R. Alchaar
J. B. Rodriguez
L. Höglund
S. Naureen
E. Costard
P. Christol


The paper presents a dual-band plasmonic solar cell. The proposed unit structure gathers two layers, each layer consists of a silver nanoparticle deposited on a GaAs substrate and covered with an ITO layer, It reveals two discrete absorption bands in the infra-red part of the solar spectrum. Nanoparticle structures have been used for light-trapping to increase the absorption of plasmonic solar cells. By proper engineering of these structures, resonance frequencies and absorption coefficients can be controlled as it will be elucidated. The simulation results are achieved using CST Microwave Studio through the finite element method. The results indicate that this proposed dual-band plasmonic solar cell exhibits an absorption bandwidth, defined as the full width at half maximum, reaches 71 nm. Moreover, It can be noticed that by controlling the nanoparticle height above the GaAs substrate, the absorption peak can be increased to reach 0.77.

Przejdź do artykułu

Autorzy i Afiliacje

A. A. M. Khalaf
M. D. Gaballa


The paper presents a comprehensive look at the perspectives on the use of THz in digital communication systems. The publication aims to focus on arguments that justify a significant increase in the frequency of radio links and their integration with fibre-based networks. Comparison of THz links with their microwave and optical counterparts is discussed from basic physical limitations to technological constraints. Main attention is paid to the available channel capacity resulting from its bandwidth and signal-to-noise ratio. The short final discussion is about technology platforms that seem to be crucial to the availability of suitable THz sources. According to the author, the biggest advantage of using bands in the range of several hundred GHz for a digital data transmission is their use for mobile communication over short distances, as well as for broadband indoor links. However, these applications require a development of compact electronic THz sources with low noise and power reaching single watts. This is beyond the range of the most popular silicon-based technology platform, although a significant progress can be expected with the development of technologies based on wide bandgap semiconductors. Fibre optic connections remain the unquestioned leader in communication over long distances and permanent links.

Przejdź do artykułu

Autorzy i Afiliacje

J. Marczewski


Opto-Electronics Review - Editorial Board

L. R. JAROSZEWICZ, Military University of Technology, Warsaw, Poland

Deputy Editor-in Chief:
P. MARTYNIUK, Military University of Technology, Warsaw, Poland

Board of Co-editors:

Optical Design and Applications
V.O. ANGELSKY, Chernivtsi National University, Chernivtsi, Ukraine

Image Processing
M. JÓŹWIK, Warsaw University of Technology, Warsaw, Poland

T. ANTOSIEWICZ, Warsaw University, Warsaw, Poland

Modelling of Optoelectronic Devices. Semiconductor Lasers
M. DEMS, Łódź Technical University, Łódź, Poland

Optoelectronics Materials
D. DOROSZ, AGH University of Science and Technology, Cracow, Poland

Micro-Opto-Electro-Mechanical Systems
T.P. GOTSZALK, Wrocław University of Technology, Wrocław, Poland

Infrared Physics and Technology <
M. KOPYTKO, Military University of Technology, Warsaw, Poland

Technology and Fabrication of Optoelectronic Devices
J. MUSZALSKI, Institute of Electron Technology, Warsaw, Poland

Photonic Crystals
K. PANAJOTOV, Vrije Universiteit Brussels, Brussels, Belgium

Laser Physics, Technology and Applications
J. ŚWIDERSKI, Warsaw University of Technology, Warsaw, Poland

Optical Sensors and Applications
M. ŚMIETANA, Warsaw University of Technology, Warsaw, Poland

A. IWAN, Military Institute of Engineer Technology, Wroclaw, Poland

Biomedical Optics and Photonics
A. LIEBERT, Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland

International Editorial Advisory Board

D. BIMBERG, Technische Universitaet Berlin, Berlin, Germany

F. CAPASSO, Harvard University, Cambridge, USA

A.I. DIROCHKA, Production Center ORION, Moscow, Russia

P.G. ELISEEV, University of New Mexico, Albuquerque, USA

P. HARING−BOLIVAR, University of Siegen, Siegen, Germany

M. HENINI, University of Nottingham, Nottingham, England

B. JASKORZYNSKA, Royal Institute of Technology, Kista, Sweden

M. KIMATA, Ritsumeikan University, Shiga, Japan

R. KLETTE, University of Auckland, Auckland, New Zealand

S. KRISHNA, University of New Mexico, Albuquerque, USA

H.C. LIU, Shanghai Jiao Tong University, Shanghai, China

J. MISIEWICZ, Wrocław University of Technology, Wrocław, Poland

E. OZBAY, Bilkent University, Ankara, Turkey

J.G. PELLEGRINI, Night Vision and Electronic Sensors Directorate, Fort Belvoir, USA

M. RAZEGHI, Northwestern University, Evanston, USA

A. ROGALSKI, Military University of Technology, Warsaw, Poland

P. RUSSELL, Max Planck Institute for the Science of Light, Erlangen, Germany

V. RYZHII, University of Aizu, Aizu, Japan

C. SIBILIA, Universita' di Roma “La Sapienza”, Roma, Italy

A. TORRICELLI, Politecnico di Milano, Milano, Italy

T. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

W. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

S.−T. WU, University of Central Florida, Orlando, USA

Y.P. YAKOVLEV, Ioffe Physicotechnical Institute, St. Petersburg, Russia

J. ZIELŃSKI, Military University of Technology, Warsaw, Poland

Language Editor

J. Kulesza, e-mail:

Technical Editors:

R.Podraza, e-mail:

E.Sadowska, e-mail:


Military University of Technology,

Gen. Sylwestra Kaliskiego St. 2,

00 – 908 Warsaw, Poland

Instrukcje dla autorów

Polityka Open Access

Opto-Electronics Review is an open access journal with all content available with no charge for readers in full text version. The journal content is available under the licencse CC BY-SA 4.0

Dodatkowe informacje

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encourage. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Current Contents - Physical, Chemical & Earth Sciences

Current Contents - Engineering, Technology & Applied Sciences

Science Citation Index Expanded

Journal Citation Reports - Science Edition



Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Authorship of the paper: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study.

Originality and plagiarism: The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others, that this has been appropriately cited or quoted.

Data access and retention: Authors may be asked to provide the raw data in connection with a paper for editorial review, and should be prepared to provide public access to such data.

Multiple, redundant or concurrent publication: An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication.

Acknowledgement of sources: Proper acknowledgment of the work of others must always be given.

Disclosure and conflicts of interest: All submissions must include disclosure of all relationships that could be viewed as presenting a potential conflict of interest.

Fundamental errors in published works: When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Reporting standards: Authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance.

Hazards and human or animal subjects: Statements of compliance are required if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, or if it involves the use of animal or human subjects.

Use of patient images or case details: Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji