Nauki Techniczne

Opto-Electronics Review


Opto-Electronics Review | 2016 | vol. 24 | No 3 |


In this paper we propose a method which allows to overcome the basic functional problems in holographic displays with naked eye observation caused by delivering too small images visible in narrow viewing angles. The solution is based on combining the spatiotemporal multiplexing method with a 4f optical system. It enables to increase an aperture of a holographic display and extend the angular visual field of view. The applicability of the modified display is evidenced by Wigner distribution analysis of holographic imaging with spatiotemporal multiplexing method and by the experiments performed at the display demonstrator.

Przejdź do artykułu

Autorzy i Afiliacje

G. Finke
M. Kujawińska
T. Kozacki
W. Zaperty


The main objective of this work is to characterize the performance of an interferometric fibre sensor which has been designed in order to register rotational phenomena, both in seismological observatories and engineering constructions. It is based on a well-known Sagnac effect which enables to detect one-axis rotational motions in a direct way and without any reference system. The presented optical fibre sensor – FOSREM allows to measure a component of rotation in a wide range of signal amplitude form 10–8 rad/s to 10 rad/s, as well as frequency from 0 Hz to the upper frequency from 2.56 Hz to 328.12 Hz. The laboratory investigation of our system indicated that it keeps theoretical sensitivity equal to 2·10–8 rad/s/Hz1/2 and accuracy no less than 3·1–8 to 1.6·10–6 rad/s in the above mentioned frequency band. Moreover, system size that equals 0.36×0.36×0.16 m and opportunity to remotely control the system via Internet by special server make FOSREM a mobile and autonomous device.

Przejdź do artykułu

Autorzy i Afiliacje

A. Kurzych
J.K. Kowalski
B. Sakowicz
Z. Krajewski
L.R. Jaroszewicz


An overview of our recent developments, regarding “water-window” soft X-ray (SXR) microscopy based on a laser-plasma double stream gas puff target sources is presented. The work, presented herein, describes two approaches to SXR microscopy. The first one is a low spatial resolution, achromatic SXR microscopy, employing Wolter type-I objective. The second one is a nanometer spatial resolution SXR microscopy, with the use of a Fresnel zone plate objective, for imaging various objects with quasimonochromatic light, emitted from a double stream gas puff target based short wavelength source. The developments regarding both systems are presented, as well as the possible applications, for which the SXR microscope was already employed. Such compact, table-top size, laboratory type microscopy setups may be employed in the near future for complementary-like studies to other, often used, microscopy techniques.

Przejdź do artykułu

Autorzy i Afiliacje

P.W. Wachulak


In the paper the analysis of up-conversion (UC) luminescence in 0.5Yb2O3/(0.25-1)Eu2O3 (mol.%) co-doped germanate glass and optical fibre has been investigated. Up-conversion emission of bands at 591, 616, 652, 701 nm to which correspond Eu3+: 5D07F1, 5D07F2, 5D07F3, 5D07F4 transitions, respectively was obtained as a result of cooperative energy transfer between Yb3+ and Eu3+ ions. The highest up-conversion emission (Yb3+ → Eu3+ energy transfer efficiency η = 24%) was obtained in 0.5Yb2O3/0.75Eu2O3 co-doped glass. Comparison of up-conversion and down-conversion luminescence spectra of bulk glass, glass fibre and different length double-clad optical fibre (up to 5 m) showed subtle differences in shape of the spectrum. In comparison to down – conversion emission (λexc = 405 nm) main UC luminescence band is red-shifted by 2 nm and is characterized by 5 nm greater full – width half – maximum (FWHM).

Przejdź do artykułu

Autorzy i Afiliacje

M. Kochanowicz
J. Zmojda
T. Ragin
P. Miluski
P. Jelen


Opto-Electronics Review - Editorial Board

L. R. JAROSZEWICZ, Military University of Technology, Warsaw, Poland

Deputy Editor-in Chief:
P. MARTYNIUK, Military University of Technology, Warsaw, Poland

Board of Co-editors:

Optical Design and Applications
V.O. ANGELSKY, Chernivtsi National University, Chernivtsi, Ukraine

Image Processing
M. JÓŹWIK, Warsaw University of Technology, Warsaw, Poland

T. ANTOSIEWICZ, Warsaw University, Warsaw, Poland

Modelling of Optoelectronic Devices. Semiconductor Lasers
M. DEMS, Łódź Technical University, Łódź, Poland

Optoelectronics Materials
D. DOROSZ, AGH University of Science and Technology, Cracow, Poland

Micro-Opto-Electro-Mechanical Systems
T.P. GOTSZALK, Wrocław University of Technology, Wrocław, Poland

Infrared Physics and Technology <
M. KOPYTKO, Military University of Technology, Warsaw, Poland

Technology and Fabrication of Optoelectronic Devices
J. MUSZALSKI, Institute of Electron Technology, Warsaw, Poland

Photonic Crystals
K. PANAJOTOV, Vrije Universiteit Brussels, Brussels, Belgium

Laser Physics, Technology and Applications
J. ŚWIDERSKI, Warsaw University of Technology, Warsaw, Poland

Optical Sensors and Applications
M. ŚMIETANA, Warsaw University of Technology, Warsaw, Poland

A. IWAN, Military Institute of Engineer Technology, Wroclaw, Poland

Biomedical Optics and Photonics
A. LIEBERT, Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland

International Editorial Advisory Board

D. BIMBERG, Technische Universitaet Berlin, Berlin, Germany

F. CAPASSO, Harvard University, Cambridge, USA

A.I. DIROCHKA, Production Center ORION, Moscow, Russia

P.G. ELISEEV, University of New Mexico, Albuquerque, USA

P. HARING−BOLIVAR, University of Siegen, Siegen, Germany

M. HENINI, University of Nottingham, Nottingham, England

B. JASKORZYNSKA, Royal Institute of Technology, Kista, Sweden

M. KIMATA, Ritsumeikan University, Shiga, Japan

R. KLETTE, University of Auckland, Auckland, New Zealand

S. KRISHNA, University of New Mexico, Albuquerque, USA

H.C. LIU, Shanghai Jiao Tong University, Shanghai, China

J. MISIEWICZ, Wrocław University of Technology, Wrocław, Poland

E. OZBAY, Bilkent University, Ankara, Turkey

J.G. PELLEGRINI, Night Vision and Electronic Sensors Directorate, Fort Belvoir, USA

M. RAZEGHI, Northwestern University, Evanston, USA

A. ROGALSKI, Military University of Technology, Warsaw, Poland

P. RUSSELL, Max Planck Institute for the Science of Light, Erlangen, Germany

V. RYZHII, University of Aizu, Aizu, Japan

C. SIBILIA, Universita' di Roma “La Sapienza”, Roma, Italy

A. TORRICELLI, Politecnico di Milano, Milano, Italy

T. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

W. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

S.−T. WU, University of Central Florida, Orlando, USA

Y.P. YAKOVLEV, Ioffe Physicotechnical Institute, St. Petersburg, Russia

J. ZIELŃSKI, Military University of Technology, Warsaw, Poland

Language Editor

J. Kulesza, e-mail:

Technical Editors:

R.Podraza, e-mail:

E.Sadowska, e-mail:


Military University of Technology,

Gen. Sylwestra Kaliskiego St. 2,

00 – 908 Warsaw, Poland

Instrukcje dla autorów

Polityka Open Access

Opto-Electronics Review is an open access journal with all content available with no charge for readers in full text version. The journal content is available under the licencse CC BY-SA 4.0

Dodatkowe informacje

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encourage. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Current Contents - Physical, Chemical & Earth Sciences

Current Contents - Engineering, Technology & Applied Sciences

Science Citation Index Expanded

Journal Citation Reports - Science Edition



Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Authorship of the paper: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study.

Originality and plagiarism: The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others, that this has been appropriately cited or quoted.

Data access and retention: Authors may be asked to provide the raw data in connection with a paper for editorial review, and should be prepared to provide public access to such data.

Multiple, redundant or concurrent publication: An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication.

Acknowledgement of sources: Proper acknowledgment of the work of others must always be given.

Disclosure and conflicts of interest: All submissions must include disclosure of all relationships that could be viewed as presenting a potential conflict of interest.

Fundamental errors in published works: When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Reporting standards: Authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance.

Hazards and human or animal subjects: Statements of compliance are required if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, or if it involves the use of animal or human subjects.

Use of patient images or case details: Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji