Life Sciences and Agriculture

Polityka Energetyczna - Energy Policy Journal

Content

Polityka Energetyczna - Energy Policy Journal | 2018 | vol. 21 | No 4 |

Abstract

The primary aim of this paper was to assess the development of prosumer energy sector in Poland. In the first point, the basic notions connected with prosumer energy (micro-installation, prosumer) were discussed on the basis of Law of Renewable Energy Sources of February 20, 2015 (Journal of Laws, item 478, as amended) and the main aspects of the European Union energy policy where presented in the context of the development of the prosumer energy sector. In this part of the study, numerous benefits for the Polish economy and consumers of electrical energy, connected with the expansion of prosumer energy sector, were presented. On the other hand, many obstacles which stall this sector in Poland were noticed. In the second point the most important regulations from the Law of Renewable Energy Sources of February 20, 2015 were analyzed (In the second point the most important regulations from the Law of Renewable Energy Sources of February 20, 2015 (hereinafter: the RES act) were analyzed). On the basis of this legal act, the so called “rebate system”, which is currently used in Poland to support prosumers of electrical energy, was described. Moreover, many legal and administrative simplifications implemented by the RES act were indicated. The analytical approach to the RES Act in this study resulted in the detection of many regulations in this legal act which may have an adverse impact on the development of the prosumer energy sector in Poland. In the third point, programs co-financed by the Polish government or the European Union, which financially support the purchase and installation of energy technologies using RES, were described. Statistical data connected with the prosumer energy sector in Poland was presented in the fourth point of this paper. On the basis thereof, the authors attempted to find the correlation between the number of prosumers and the share of the amount of electrical energy from renewable energy sources in gross electrical energy consumption. In the fifth point issues connected with energy technologies used in the Polish prosumer energy sector were discussed. Moreover, this point focuses on the great popularity of photovoltaic modules among Polish prosumers and results in the reluctance of Polish prosumers to install wind microturbines and small hydroelectric power plants.

Go to article

Abstract

This article, as far as possible based on the available literature, empirical measurements, and data from mesoscale models describes and compares expected wind conditions within the Baltic Sea area. This article refers to aspects related to the design and assessment of wind farm wind resources, based on the author’s previous experience related to onshore wind energy. The consecutive chapters of this publication are going to describe the present state and the presumptions relating to the development of wind energy within the Baltic Sea area. Subsequently, the potential of the sea was assessed using mesoscale models and empirical data from the Fino 2 mast that is located approximately 200 kilometers away from the majority of areas indicated in the Polish marine spatial development plan draft of Poland for offshore wind farm development (Maritime Office in Gdynia 2018). In the chapter describing mesoscale models, the author focused his attention on the GEOS5.12.4 model as the source of Modern-Era Retrospective Analysis for Research and Application 2 data, also known as MERRA2 (Administration National Aeronautics and Space Agency, 28), which, starting from February 2016, replaced MERRA data (Thogersen et al. 2016) and have gained a wide scope of applications in the assessment of pre-investment and operational productivity due to a remarkable level of correlation with in-situ data. Model-specific data has been obtained for eight locations, which largely overlap with the locations of the currently existing offshore wind farms within the Baltic Sea area. A significant part of this publication is going to be devoted to the description of the previously mentioned Fino 2 mast and to the analysis of data recorded until the end of 2014 by using the said mast (Federal Maritime and Hydrographic Agency 2018). The analysis has been carried out by means using scripts made in the VBA programming language, making it easier to work with large chunks of data. Measurements from the Fino 2 mast, together with long-term mesoscale model-specific measurements can be used, to some extent, for the preliminary assessment of wind farm energy yield in the areas designated for the development of renewable energy in the Polish exclusive maritime economic zone (Maritime Office in Gdynia 2018). In the final part of this article, pieces of information on the forecasted Baltic Sea wind conditions, especially within the exclusive economic zone of Poland, are going to be summarized. A major focus is going to be put on the differences between offshore and onshore wind energy sources, as well as on further aspects, which should be examined in order to optimize the offshore wind power development.

Go to article

Abstract

Increasing the share of energy production from renewable sources (RES) plays a key role in the sustainable and more competitive development of the energy sector. Among the renewable energy sources, the greatest increase can be observed in the case of solar and wind power generation. It should be noted that RES are an increasingly important elements of the power systems and that their share in energy production will continue to rise. On the other hand the development of variable generation sources (wind and solar energy) poses a serious challenge for power systems as operators of unconventional power plants are unable to provide information about the forecasted production level and the energy generated in a given period is sometimes higher than the demand for energy in all of the power systems. Therefore, with the development of RES, a considerable amount of the generated energy is wasted. The solution is energy storage, which makes it possible to improve the management of power systems. The objective of this article is to present the concept of electricity storage in the form of the chemical energy of hydrogen (Power to Gas) in order to improve the functioning of the power system in Poland. The expected growth in the installed capacity of wind power plants will result in more periods in which excess energy will be produced. In order to avoid wasting large amounts of energy, the introduction of storage systems is necessary. An analysis of the development of wind power plants demonstrates that the Power to Gas concept can be developed in Poland, as indicated by the estimated installed capacity and the potential amount of energy to be generated. In view of the above, the excess electricity will be available for storage in the form of chemical energy of hydrogen, which

Go to article

Abstract

The article discusses the importance of small hydro power plants in the Polish power system and defines the legal conditions for the operation of small hydro power plants. The phenomena occurring in the hydrological system of small hydro power plants and their impact on the natural environment were analyzed. An analysis of phenomena occurring in the hydrological system and the activity of small hydro power plants that are operating on the Radunia River helped us identify relations between different types of power plants working in cascades and possibilities of power generation control in period of several days. The above-mentioned analysis has been used in the development of a mathematical model of a hydroelectric plant and cascades of hydroelectric plants. The numerical simulations carried out concerned both the self-operating power plant and a cascade of two identical objects of this type. There is a possibility for small hydro power plant to run as a base load power plant and during periods of high demand as well (peak demand or unexpected loss of generation in the power system). A single hydroelectric power plant can deal with varying peak load demands while adding a second stage increase those abilities. A cascade of reservoir hydropower plants has a much greater ability to store energy and give it back in time. In addition, the existence of a second power plant equipped with a surge reservoir allows for a significant reduction in the amplitude of flows in the river below the cascade, which will reduce the negative impact of the cascade on the environment.

Go to article

Abstract

Among the numerous modern, high-efficiency energy technologies allowing for the conversion of chemical energy of coal into electricity and heat, the Direct Carbon Fuel Cells (DCFC) deserve special attention. These are devices that allow, as the only one among all types of fuel cells, to directly convert the chemical energy contained in solid fuel (coal) into electricity. In addition, they are characterized by high efficiency and low emission of pollutants. The paper reviews and discusses previous research and development works, both around the world and in Poland, into the technology of direct carbon fuel cells with an alkaline (hydroxide) electrolyte.

Go to article

Abstract

The events that took place on April 10,2010 on the Gulf of Mexico began an international debate on minimizing and materializing the risk of dangerous occurrences and accidents during the exploitation of offshore energy resources. In the aftermath of this event to ensure safe operation in European maritime areas, the European Union decided to introduce regulations throughout the entire EU. On June 12, 2013, Directive 2013/30/EU of the European Parliament and of the Council on safety of offshore oil and gas operations and amending Directive 2004/35/EC was issued. The main aim of the Directive is to reduce the occurrence of major accidents relating to offshore oil and gas operations and limits their consequences. The article is a review of provision of Directive 2013/30/UE with particular regard to requirements at the national level. What is more, the paper indicates solutions which must be introduced by July 19, 2018 in offshore companies. The incorporated solutions must include the protection of the marine environment against pollutions (especially oil spills), establish minimum conditions for safe offshore exploration and the production of oil and gas and improve the response mechanism in the eventof an accident. The paper also presents accidents which take place in oil and gas fields which are a background of necessary improvements of safety during offshore operations.

Go to article

Abstract

The aim of the article is to present the issue of risk and related management methods, with a particular emphasis on the conditions of investment in energy infrastructure. The work consists of two main parts; the first one is the theoretical analysis of the issue, while the second discusses the application of analysis methods on the example of the investment in an agricultural biogas plant. The article presents the definitions related to the investment risk and its management, with a particular emphasis on the distinction between the risk and uncertainty. In addition, the main risk groups of the energy sector were subjected to an analysis. Then, the basic systematics and the division into particular risk groups were presented and the impact of the diversification of investments in the portfolio on the general level of risk was determined. The sources of uncertainty were discussed with particular attention to the categories of energy investments. The next part of the article presents risk mitigation methods that are part of the integrated risk management process and describes the basic methods supporting the quantification of the risk level and its effects – including the Monte Carlo (MC), Value at risk (VaR), and other methods. Finally, the paper presents the possible application of the methods presented in the theoretical part. The investment in agricultural biogas plant, due to the predictable operation accompanied by an extremely complicated and long-term investment process, was the subject of the analysis. An example of “large drawing analysis” was presented, followed by a Monte Carlo simulation and a VaR value determination. The presented study allows for determining the risk in the case of deviation of financial flows from the assumed values in particular periods and helps in determining the effects of such deviations. The conducted analysis indicates a low investment risk and suggests the ease of similar calculations for other investments.

Go to article

Abstract

The article presents a synthetic analysis of the crude oil market in Poland. As of today, this safety is provided mainly on the basis of native lignite and hard coal resources. However, the analysis of the hard coal market conducted by the authors indicates that the carried out mining restructuring (among others) led to an excessive reduction of mining volume and employment level in the hard coal mining sector. This led to a precedent situation when Poland became an importer of this energy carrier. In addition, the European Union’s requirements for greenhouse gas emissions must be taken into account. In connection with the above, it is necessary to search for new energy sources or technologies that enable hard coal to meet the requirements. It is possible to apply the so-called clean coal technologies that allow the greenhouse gas emissions generated during coal combustion to be reduced. As of today, they are not used on a mass scale, because the use of this type of technology involves additional financial expenses. However, taking into account that technologies have been growing faster and faster, are modernized in a shorter time, making a breakthrough discovery took hundreds of years, now it is often a few months, clean coal technologies can become the optimal solution in the near future. It is also necessary to diversify the sources of obtaining imported energy carriers.

The article describes coal and crude oil in terms of their mutual substitution. The article is a continuation of research conducted by the authors. Previous publications presented considerations on analogous topics related to natural gas and renewable energy sources. The crude oil market in Poland was analyzed and forecasts for oil extraction and the demand in the world and Poland by 2023 were presented. The SARIMA model was also created. The model made it possible to obtain oil an prices forecast.

Go to article

Abstract

The national power industry is based primarily on its own energy mineral resources such as hard and brown coal. Approximately 80% of electrical energy production from these minerals gives us complete energy independence and the cost of its production from coal is the lowest in comparison to other sources. Poland has, for many decades had vast resources of these minerals, the experience of their extraction and processing, the scientific-design facilities and technical factories manufacturing machines and equipment for own needs, as well as for export. Nowadays coal is and should be an important source of electrical energy and heat for the next 25–50 years, because it is one of the most reliable and price acceptable energy sources. This policy may be disturbed over the coming decades due to the depletion of active resources of hard and brown coal. The conditions for new mines development as well as for all coal mining sector development in Poland are very complicated in terms of legislation, environment, economy and image. The authors propose a set of strategic changes in the formal conditions for acquiring mining licenses. The article gives a signal to institutions responsible for national security that without proposed changes implementation in the legal and formal process it, will probably not be possible to build next brown coal, hard coal, zinc and lead ore or other minerals new mines.

Go to article

Abstract

In the constant pursue of the sustainability of socio-industrial systems, the definition of useful, reliable and informative, and at the same time simple and transparent, indicators is an important step for the evaluation of the circularity of the assessed systems. In the circular economy (CE) context, scientific literature has already identified the lack of overarching indicators (social, urban, prevention-oriented, etc.), pointing out that mono-dimensional indicators are not able to grasp the complexity of the systemic, closed-loop, feedback features of CE. In this respect, Emergy accounting is one of the approaches that have been identified as holding the potential to capture both resource generation and product delivery dimensions and therefore to provide an enhanced systems’ evaluation in a CE perspective.

Because of Emergy’s intrinsic definition and its calculation structure, Emergy-based indicators conceptually lend themselves very well to the evaluation and monitoring of circular processes. Additionally, Emergy has the unique feature of enabling the evaluation of systems that are not necessarily only technosphere systems, but also of technological systems which embed nature (techno-ecological systems).

The present paper gives a perspective on a set of Emergy-based indicators that we have identified as suitable to evaluate circular systems, and outlines the different perspective compared to the circularity indicators defined in the “Circularity Indicators Project” launched by the Ellen MacArthur Foundation.

Go to article

Editorial office

Editorial Board
  • Editor-in-Chief: Eugeniusz Mokrzycki
  • Deputy Editor-in-Chief: Lidia Gawlik (section: utilization of energy resources)
  • Editorial Secretary: Katarzyna Stala-Szlugaj (section: fuels and energy)
  • Deputy Editorial Secretary: Jacek Kamiński (section: energy)
  • Statistical Editor: Jacek Mucha
Advisory Board
  • Rolf Bracke, Professor, The International Geothermal Centre Hochschule, Bochum, Germany
  • Tadeusz Chmielniak, DSc(Eng), Professor, The Silesian University of Technology, Gliwice, Poland
  • Mariusz Filipowicz, DSc(Eng), Associate Professor, The AGH University of Science and Technology, Kraków, Poland
  • Anatoliy Goncharuk, Professor, The International Humanitarian University, Odessa, Ukraine
  • Ernst Huenges, Professor, The GFZ German Research Centre for Geosciences, Potsdam, Germany
  • Louis Jestin, Adjunct Professor, The University of Cape Town, Rondebosch, RSA
  • Gudni Johannesson, PhD(Eng), Orkustofnun, The Icelandic National Energy Authority, Reykjavik, Iceland
  • Jacek Marecki, DSc(Eng), Professor, Gdańsk University of Technology, Gdańsk, Poland
  • Nuria Rabanal, PhD, The University of Leon, Leon, Spain
  • Jakub Siemek, DSc(Eng), Professor, The AGH University of Science and Technology, Kraków, Poland
  • Jan Soliński, PhD, Polish Member of the Committee of the WEC, Warsaw, Poland
  • Namejs Zeltins, DSc(Eng), Professor, The Institute of Physical Energetics, Riga, Latvia
Publishing Committee
  • Emilia Rydzewska – linguistic editor (Polish)
  • Michelle Atallah – linguistic editor (English)
  • Beata Stankiewicz – technical editor

Contact

Mineral and Energy Economy Research Institute of the Polish Academy of Sciences
J. Wybickiego 7A, 31-261 Kraków,
Phone: (+48) 12 632 33-00, Fax: +48 12 632 35-24,
Email: polene@min-pan.krakow.pl

This page uses 'cookies'. Learn more