Nauki Techniczne

Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi Polskiej Akademii Nauk

Zawartość

Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi Polskiej Akademii Nauk | 2018 | Nr 104 |

Abstrakt

W artykule przedstawiono analizę kierunków zrównoważonego rozwoju źródeł wytwórczych energii elektrycznej w Krajowym Systemie Elektroenergetycznym (KSE). Sformułowano kryteria zrównoważonego rozwoju systemu elektroenergetycznego. Opracowano bilans mocy jednostek wytwórczych centralnie dysponowanych (JWCD), wymagany dla bezpiecznej pracy KSE do 2035 roku. Zdefiniowano 19 perspektywicznych technologii wytwarzania energii elektrycznej, podzielonych na trzy następujące grupy: elektrownie systemowe, elektrociepłownie dużej i średniej mocy oraz elektrownie i elektrociepłownie małej mocy (źródła rozproszone). Wyznaczono wielkości charakteryzujące efektywność energetyczną wybranych do analizy technologii wytwórczych oraz ich emisyjność CO2. Dla poszczególnych technologii wyznaczono również jednostkowe, zdyskontowane na 2018 rok, koszty wytwarzania energii elektrycznej, z uwzględnieniem kosztów uprawnień do emisji CO2. Opracowano mapę drogową zrównoważonego rozwoju źródeł wytwórczych w KSE w latach 2020–2035. Wyniki obliczeń i analiz przedstawiono w tabelach i na rysunku.

Przejdź do artykułu

Abstrakt

W artykule przeprowadzono porównanie gospodarki surowcami energetycznymi w Polsce i na Ukrainie w latach 2000–2017. Przeanalizowano zmiany w zakresie stanu zasobów węgla, ropy naftowej i gazu ziemnego. Wskaźniki wystarczalności zasobów rozpatrywanych paliw dla Polski i Ukrainy dodatkowo porównano z wybranymi krajami UE. Dla przeprowadzenia oceny bezpieczeństwa energetycznego Polski i Ukrainy przeanalizowano najpierw zmiany w zakresie zużycia energii pierwotnej ogółem, a następnie określono, jak kształtowały się możliwości pokrycia zapotrzebowania na gaz ziemny, węgiel i ropę naftową poprzez wydobycie własne poszczególnych surowców energetycznych. Takie porównanie wskazuje w przypadku Polski na przewagę węgla, zaś na Ukrainie wydobycie ropy naftowej i gazu ziemnego w wyższym stopniu pokrywa zapotrzebowanie krajowe. W latach 2000–2017 odmiennie przedstawiały się tendencje w zakresie zużycia energii pierwotnej, w Polsce odnotowano 17% wzrost, zaś na Ukrainie blisko 40% spadek. Zidentyfikowano główne czynniki odpowiedzialne za radykalne zmiany w gospodarce paliwowo-energetycznej Ukrainy: działania wojenne na wschodzie kraju oraz aneksja Krymu, zmiany demograficzne. Wydarzenia te negatywnie wpłynęły szczególnie na wielkość wydobycia węgla kamiennego na Ukrainie, a niezbędny dla zbilansowania był znaczący wzrost importu z 5,36 do 19,14 mln ton w latach 2011–2017. Porównano także saldo wymiany zagranicznej dla energii elektrycznej. To porównanie w ciągu ostatnich lat wypada korzystanie dla Ukrainy, gdzie zauważalna jest przewaga eksportu energii elektrycznej nad importem, co wygenerowało przychody przewyższające 200 mln USD w 2017 r.

Przejdź do artykułu

Abstrakt

Według definicji Międzynarodowej Agencji Energii bezpieczeństwo energetyczne to ciągłe dostawy energii po akceptowalnych cenach. Krajowa energetyka oparta jest w głównej mierze na własnych surowcach energetycznych takich jak węgiel kamienny i brunatny. Produkcja około 88% energii elektrycznej z tych kopalin daje nam pełną niezależność energetyczną, a koszty produkcji energii z tych surowców są najmniejsze w stosunku do innych technologii. Energia wyprodukowana z węgla brunatnego charakteryzuje się najniższym jednostkowym kosztem technicznym wytworzenia. Polska posiada zasoby tych kopalin na szereg dziesiątków lat, doświadczenie związane z ich wydobyciem i przeróbką, zaplecze naukowo-projektowe oraz fabryki zaplecza technicznego produkujące maszyny i urządzenia na własne potrzeby, a także na eksport. Węgiel jest, i winien pozostać, w Polsce przez najbliższe 25–50 lat istotnym źródłem zaopatrzenia w energię elektryczną i ciepło, gdyż stanowi jedno z najbardziej niezawodnych i przystępnych cenowo źródeł energii. Kontynuacja takiej polityki może być zachwiana w okresie następnych dekad, z powodu wyczerpywania się udostępnionych zasobów węgla tak brunatnego, jak i kamiennego. Uwarunkowania dla budowy nowych kopalń, a tym samym dla rozwoju górnictwa węgla w Polsce, są bardzo złożone zarówno pod względem prawnym, środowiskowym, ekonomicznym, jak i wizerunkowym. Z podobnymi problemami borykają się Niemcy. Pomimo iż wizerunkowo jest to kraj inwestujący w odnawialne źródła energii, uchodzący za pionierów produkcji energii z OZE, to w rzeczywistości podstawowymi nośnikami służącym do produkcji energii elektrycznej wciąż są węgiel, a przede wszystkim węgiel brunatny.

Przejdź do artykułu

Abstrakt

Artykuł ma na celu przedstawienie istotnego komponentu zarządzania energią, jakim jest realizacja audytów efektywności energetycznej przedsiębiorstw. Z wykorzystaniem analizy typu case study przyjrzano się roli audytu energetycznego w kontekście poprawy efektowności energetycznej, w wybranych, dużych przedsiębiorstwach produkcyjnych. Przedstawiono zarys wymagań prawnych wynikających z implementacji znowelizowanej ustawy o efektywności energetycznej (Dz.U. 2016 poz. 831). Zaprezentowano w szczególności problemy i wyzwania odnoszące się do sposobu realizacji obowiązku audytowego w praktyce gospodarczej. Poruszono kwestię jakości oraz przydatności (w procesie decyzyjnym) wypracowanych raportów. Ustalono, że występują przesłanki do twierdzenia, iż obowiązkowy audyt energetyczny przedsiębiorstw nie zawsze jest optymalnie wykorzystywanym instrumentem poprawy efektywności energetycznej. Wina za ten stan rzeczy leży częściowo po stronie państwa, jednostek audytujących oraz samych zarządzających przedsiębiorstwem. Problemem jest nie tylko nieskuteczna komunikacja, ale także niewystarczający poziom wiedzy z zakresu zarządzana energią oraz pośpiech. Nowelizacja ustawy o efektywności energetycznej (w przeciągu zaledwie jednego roku) narzuciła konieczność przeprowadzenia audytu energetycznego określonej grupy przedsiębiorstw. W związku z tym, iż wszystkie objęte obowiązkiem podmioty musiały prowadzić działania w tym samym czasie, pojawiły się liczne problemy. Część zarządzających dowiedziała się o obowiązku przeprowadzenia audytu od firm, które same zgłaszały się z propozycją jego wykonania. Świadczy to o braku właściwego przepływu informacji między organami administracji państwowej a przedsiębiorstwami. Po raz kolejny okazało się, iż praktycy nie nadążają z realizacją działań będących konsekwencją nie do końca przemyślanych zmian w prawie. Pośpiech (w wywiązywaniu się z obowiązku ustawowego) wpłynął na bardzo dużą rozpiętość cenową zgłaszanych do przetargów ofert na przeprowadzenie audytu energetycznego przedsiębiorstwa. Utrudnieniem w prawidłowej realizacji zadań stały się m.in. biurokratyczne przepisy dotyczące przetargów. Sami przedsiębiorcy, nie mając jednoznacznych wytycznych „czego się spodziewać po wykonanym audycie energetycznym” oraz „jak ma wyglądać raport” i „co w szczególności ma zawierać”, niejednokrotnie wybierali „najtańszą ofertę” – nie zawsze zastanawiając się nad tym, jakie będą jakościowe konsekwencje takich decyzji. Niektóre jednostki certyfikujące – wykorzystując nadarzające się okazje i sploty okoliczności – oferowały wątpliwej jakości, nieprofesjonalne usługi audytowe. W zaprezentowanych warunkach trudno oczekiwać realnych, systemowych i pożądanych (ekonomicznie, ekologicznie i społecznie) rezultatów, w postaci poprawy efektywności energetycznej zarówno w skali mikro -, mezo- jak i makroekonomicznej. Warto rozważyć zmiany w ustawie o efektywności energetycznej i rozłożyć obowiązek wykonywania audytów na różne lata – według jasno zdefiniowanych kryteriów. Jeżeli stosowne działania nie zostaną przyjęte, za 4 lata powtórzy się sytuacja czasowego eldorado dla mało profesjonalnych jednostek zewnętrznych funkcjonujących na rynku audytów energetycznych. Konsekwencją znowu może stać się słaba jakość i wątpliwa przydatność raportów z audytów energetycznych przedsiębiorstw – zarówno na poziomie biznesowym, jak i ekologiczno-politycznym. Należy przeciwdziałać wszelkim formom nieuczciwej konkurencji wobec interdyscyplinarnych i specjalistycznych jednostek działających na rzecz poprawy efektywności energetycznej organizacji. Stworzenie odpowiednich warunków biznesowych korzystnie wpłynie na realną poprawę efektywności energetycznej organizacji zarówno sektora publicznego, jak i prywatnego. W tym kontekście konieczne jest podjęcie działań umożliwiających optymalizację zarówno procesu wdrożenia obligatoryjnych regulacji prawnych, jak i dobrowolnych norm i standardów (np. branżowych).

Przejdź do artykułu

Abstrakt

W ostatnim czasie duże zainteresowanie wzbudzają, wraz z otaczającym ich rynkiem, tzw. wirtualne waluty kryptograficzne, potocznie nazywane kryptowalutami. Równie dużą popularnością odznacza się obecnie stojąca za nimi technologia blockchain. Z perspektywy bezpieczeństwa energetycznego natomiast istotnym zagadnieniem jest charakteryzujący się bardzo dużą energochłonnością proces związany z wydobywaniem poszczególnych kryptowalut. Działanie to związane jest na ogół z zatwierdzaniem nowo powstających bloków w sieci blockchain oraz dołączaniem ich do sieci. Proces ten realizowany jest poprzez przeprowadzanie złożonych operacji matematycznych przez zróżnicowane urządzenia, które wymagają z kolei dużej mocy i zużywają odpowiednio dużo energii. Wpływ „koparek” kryptowalut na zapotrzebowanie na moc oraz energię najprawdopodobniej może się z czasem stopniowo zwiększać, w związku z czym zagadnienie to nie powinno być ignorowane. Zestawiając powyższe informacje równolegle z rosnącym w Krajowym Systemie Elektroenergetycznym zapotrzebowaniem na realizację usług redukcji zapotrzebowania, nasuwa się pytanie, czy urządzeń służących do wydobywania kryptowalut nie można wykorzystać właśnie do celu bilansowania systemu elektroenergetycznego. W niniejszym artykule przedstawiono analizę możliwości świadczenia usług DSR przez grupy użytkowników koparek kryptowalut, która została przeprowadzona przy uwzględnieniu podstawowych funkcjonalnych, technologicznych oraz ekonomicznych aspektów pracy tych urządzeń.

Przejdź do artykułu

Abstrakt

Samochody elektryczne (SE) są obecnie uważane za jeden z najlepszych sposobów obniżenia emisji zanieczyszczeń powietrza w transporcie drogowym, w tym CO2 i hałasu w miastach. Mogą również w wydatny sposób przyczynić się do zmniejszenia zależności transportu drogowego od importu ropy naftowej. Niemniej jednak zapotrzebowanie na energię elektryczną dużej ilości SE w drogowym transporcie nie jest bez znaczenia i ma wpływ na system elektroenergetyczny. W artykule przeanalizowano potencjalny wpływ SE na popyt, podaż, strukturę i koszty wytwarzania energii elektrycznej oraz emisję CO2 i zanieczyszczeń powietrza w wyniku wprowadzenia na polskie drogi 1 mln SE do 2025 r. oraz potrojenia tej liczby do 2035 r. Do obliczeń wykorzystano model konkurencyjnego rynku energii elektrycznej ORCED. Wyniki analizy wskazują, że niezależnie od strategii ładowania, popyt SE powoduje niewielki wzrost ogólnego zapotrzebowania na energię elektryczną w Polsce i w konsekwencji również niewielki wzrost kosztów wytwarzania. Nawet duży wzrost SE w transporcie drogowym będzie powodował raczej umiarkowane zapotrzebowanie na dodatkowe moce wytwórcze, zakładając że przedsiębiorstwa energetyczne będą miały pewną kontrolę nad trybem ładowana aut. Wprowadzenie SE nie spowoduje obniżenia emisji CO2 w stosunku do samochodów konwencjonalnych w 2025 r., wręcz przeciwnie – zwiększy je niezależnie od strategii ładowania, gdyż energia dla pokrycia popytu SE pochodzi prawie wyłącznie z elektrowni węglowych. W 2035 r. natomiast, wniosek zależy od scenariusza ładowania i możliwe jest obniżenie, jak i wzrost emisji. Pojazdy elektryczne spowodują wzrost emisji netto SO2, przyczynią się natomiast do spadku emisji netto cząstek stałych oraz NOx.

Przejdź do artykułu

Abstrakt

Zasoby węgla w Republice Czeskiej są ocenione na 10 mld ton – w tym 37% węgla kamiennego, 60% węgla brunatnego i 3% lignitu. Węgiel kamienny jest wydobywany w północnych Morawach, w 2017 roku produkcja wyniosła 5,5 mln ton. Węgiel brunatny jest eksploatowany głównie w północno-zachodnich Czechach, produkcja węgla brunatnego wyniosła w 2017 roku 38,1 mln ton. Znaczne ilości węgla kamiennego są eksportowane do Słowacji, Austrii, Niemiec i Węgier Zgodnie z polityką energetyczną państwa węgiel pozostanie głównym źródłem energii w kraju w przyszłości, pomimo zwiększonego wykorzystania energii jądrowej i gazu ziemnego. Rząd oczekuje, że w 2030 r. energia z węgla będzie stanowić 30,5% produkowanej energii. W Republice Czeskiej działa pięć przedsiębiorstw węglowych: OKD, a.s., jedyny producent węgla kamiennego oraz cztery firmy wydobywcze węgla brunatnego Severočeské Doly a.s., których właścicielem jest ČEZ, największy producent węgla brunatnego, Vršanská uhelná a.s., z zasobami węgla do 2055 roku, Severní energetická a.s. z największymi rezerwami węgla brunatnego w Republice Czeskiej i Sokolovska uhelná a.s., najmniejsza spółka górnicza wydobywającą węgiel brunatny. OKD eksploatuje węgiel kamienny w dwu kopalniach Kopalnia Důlní závod 1 – Ruch ČSA, Ruch Lazy, Ruch Darkov oraz Kopalnia Důlní závod 2 (Ruch Sever, Ruch Jih). A artykule przedstawiono również proekologiczne rozwiązanie zagospodarowania hałd odpadów po wzbogacaniu węgla – zakład wzbogacania odpadów weglowych z hałdy Hermanice.

Przejdź do artykułu

Abstrakt

W artykule przedstawiono stan rynku sprężonego gazu ziemnego jako alternatywnego paliwa do zasilania silników w transporcie, zwrócono uwagę na wymagania dyrektyw Unii Europejskiej oraz obecny stan spełnienia złożonych deklaracji. Zwrócono uwagę na aspekt ekonomiczny i przedstawiono orientacyjne koszty przejechania 10 tys. km na różnych paliwach. Omówiono proces PtG (Power to Gas) wykorzystujący energię elektryczną (produkcja wodoru) oraz ditlenek węgla wychwycony ze spalin bloku węglowego do produkcji syntetycznego metanu. Zaprezentowano schemat instalacji ze wskazaniem jego najistotniejszych składowych, oraz zwrócono uwagę na wzajemne uzupełnianie się technologii PtG z technologią wychwytu ditlenku węgla. Przedstawiono korzyści płynące z produkcji syntetycznego metanu. Opisane zostało zastosowanie sprężonego gazu ziemnego do zasilania silników w pojazdach. Skupiono się na drodze jednopaliwowego zasilania CNG (Compressed Natural Gas) w silnikach autobusów i samochodów ciężarowych, zwracając szczególną uwagę na aspekt ekologiczny zastosowanych rozwiązań. Pokazano, iż stosowanie sprężonego gazu ziemnego pozwoli ograniczyć niemalże o 100% emisję cząstek stałych z procesu spalania. Podano wady i zalety zasilania alternatywnym paliwem. Następnie przeanalizowano aspekt dwupaliwowego zasilania silników wysokoprężnych na przykładzie mniejszego silnika. Pokazano stopień ograniczenia emisji szkodliwych związków z procesu spalania. Na koniec zwrócono uwagę na możliwy efekt skali, powołując się na ilość pojazdów silnikowych w Polsce.

Przejdź do artykułu

Abstrakt

Polska stoi przed koniecznością stworzenia długofalowej polityki energetycznej na kolejne dziesiątki lat. Potrzebna jest strategia równoważenia bezpieczeństwa dostaw surowców energetycznych, efektywności procesów gospodarczych i zapewnienia odpowiedniego standardu ochrony środowiska. Proces konwersji paliw kopalnych do pożądanych nośników energii skutkuje emisją do środowiska różnych substancji gazowych, a w efekcie ich kumulacją w atmosferze w postaci gazów cieplarnianych, odpowiedzialnych za bilans radiacyjny Ziemi – efekt cieplarniany. Zachwianie równowagi między poziomem emisji tych gazów a zdolnościami do ich konwersji w atmosferze stanowi istotną przyczynę zmian klimatycznych. Wskaźniki zrównoważonego rozwoju są narzędziem monitoringu, umożliwiającym stworzenie statystycznego obrazu kraju z punktu widzenia implementacji nowego paradygmatu rozwoju. Najważniejszą cechą wskaźnika jest porównywalność jego wartości, umożliwiająca określenie pozycji danego obiektu/kraju na tle innych obiektów/krajów. W artykule poddano analizie 8 wskaźników zrównoważonego rozwoju w aspekcie wykorzystania biomasy do celów energetycznych. Przeanalizowano trzy wskaźniki ładu społecznego, dwa – ładu gospodarczego i trzy – ładu środowiskowego. Wykazano, że energetyczne wykorzystanie biomasy może znacząco zredukować emisję gazów cieplarnianych na kilku etapach: emisja może zostać wyeliminowana z procesu biologicznego przetwarzania biomasy, jej składowania, a także ograniczona na etapie transportu.

Przejdź do artykułu

Abstrakt

Pellety drzewne są klasyfikowane jako biomasa stała. Stanowią jedno z najpopularniejszych w Europie paliw stosowanych do ekologicznego ogrzewania, szczególnie w sektorze małego ciepłownictwa, spalane są w domowych kotłach małej mocy. Popularność pelletu oraz automatycznych urządzeń grzewczych umożliwiających spalanie tego paliwa wzrosła ze względu na rosnący problem zanieczyszczenia powietrza atmosferycznego (smogu) oraz w związku z licznymi powstającymi programami ograniczenia niskiej emisji (PONE). Pellet drzewny powstaje w wyniku kompresji materiału pochodzącego z drzew iglastych (w główniej mierze) oraz liściastych i zaliczany jest do odnawialnych źródeł energii. Celem prezentowanych badań było porównanie jakości pelletów drzewnych pochodzących od różnych producentów, wykorzystywanych w domowych kotłowniach na paliwa stałe na podstawie jakościowej i ilościowej identyfikacji zanieczyszczeń obecnych w badanym paliwie uzyskanym z rynku krajowego. Innowacją w prezentowanej pracy jest zastosowanie analizy petrograficznej dla paliwa w postaci pelletu, która dotychczas stosowana była jedynie w odniesieniu do paliw kopalnych. Analizę mikroskopową przeprowadzono zarówno dla pelletów certyfikowanych (EN Plus/DIN Plus), jak i niecertyfikowanych dostępnych na rynku. Niestety, analiza wykazała obecność niebezpiecznych kontaminacji w obu typach pelletu. Niedopuszczalne wtrącenia organiczne w analizowanych próbkach to: węgle kopalne i ich pochodne oraz materiały polimerowe pochodzenia naturalnego. Niedozwolone inkluzje nieorganiczne wyznaczone w analizowanych próbkach to: rdza, kawałki metalu, tworzywa sztuczne i materiały polimerowe pochodzenia nieorganicznego.

Przejdź do artykułu

Abstrakt

W Polsce procesy spalania paliw stałych są głównym źródłem emisji rtęci do środowiska. Rtęć emitowana jest zarówno przez elektrownie zawodowe, jak i instalacje przemysłowe spalające węgiel kamienny i brunatny, ale także przez gospodarstwa domowe. Przy rocznej emisji na poziomie 10 Mg gospodarstwa domowe odpowiadają za 0,6 Mg tej emisji. W pracy przeprowadzono badania nad uwalnianiem rtęci z węgla i biomasy drzewnej w domowym kotle grzewczym. Wyznaczono stopień uwalniania rtęci, który wyniósł od 98,3 do 99,1% dla węgla i od 99,5 do 99,9% dla biomasy drzewnej. Ilość emitowanej do środowiska rtęci zależy zatem od ilości rtęci zawartej w paliwie. W świetle zaprezentowanych wyników zawartość rtęci w stanie suchym w węglu jest sześciokrotnie wyższa niż w biomasie. Po uwzględnieniu kaloryczności paliw różnica pomiędzy zawartością rtęci w badanym węglu i biomasie zmniejszyła się, ale wciąż była czterokrotnie wyższa. Tak wyrażona zawartość rtęci dla badanych paliw wynosiła odpowiednio od 0,7 do 1,7 μg/MJ dla węgla i od 0,1 do 0,5 μg /MJ dla biomasy. Podstawową możliwością obniżenia emisji rtęci przez gospodarstwa domowe jest stosowanie paliw o możliwie niskiej zawartością rtęci. Zmniejszenie emisji rtęci jest również możliwe poprzez zmniejszenie jednostkowego zużycia paliw. Przyczynia się do tego stosowanie nowoczesnych kotłów grzewczych oraz termomodernizacja budynków. Istnieje również możliwość częściowego ograniczenia emisji rtęci poprzez stosowanie urządzeń do odpylania spalin.

Przejdź do artykułu

Abstrakt

Problem emisji rtęci oraz potrzebę podjęcia działań w tym kierunku zauważono w roku 2013 w konwencji Minamata (UNEP 2013), stąd coraz częściej zaczynają pojawiać się prace i nowe przepisy nakazujące redukcję tego związku ze środowiska. W pracy przedstawiono problem usuwania rtęci z gazów odlotowych z uwagi na nowe restrykcje BREF/BAT, w których poruszono też problem potrzeby poszukiwania nowych wydajniejszym rozwiązań usuwania tego zanieczyszczenia. Zwrócono uwagę na problem występowania rtęci w spalinach w formie elementarnej oraz potrzebę realizowania testów laboratoryjnych. Zaprezentowano prototypową instalację do testów sorpcji rtęci elementarnej w czystym strumieniu gazu na sorbentach stałych. Instalację zbudowano w ramach projektu LIDER finansowanego przez Narodowe centrum Badań i Rozwoju w projekcie pt.: „Zastosowanie energetycznych surowców odpadowych do wychwytywania gazowych form rtęci ze spalin”. Instalacja służy do testów w warunkach laboratoryjnych, w której gazem nośnym rtęci elementarnej jest argon. Przy użyciu opisanej aparatury dokonano pierwszych testów na sorbencie zeolitowym. Testowanym materiałem był zeolit syntetyczny typu X otrzymany w wyniku dwustopniowej reakcji syntezy popiołu lotnego klasy C z wodorotlenkiem sodu. Aby zwiększyć powinowactwo chemiczne testowanego materiału względem rtęci, otrzymany materiał sorpcyjny poddano aktywacji jonami srebra (Ag+) metodą wymiany jonowej, stosując azotan srebra (AgNO3). Pierwszy test przeprowadzono w interwale czasowym 240 min. W tym czasie nie zarejestrowano przebicia badanego złoża rtęcią, w związku z czym wnioskować można, że badany materiał może być obiecujący w opracowywaniu nowych rozwiązań wychwytywania rtęci w sektorze energetycznym. Przedstawione w artykule wyniki mogą być interesujące dla sektora energetycznego z uwagi na rozwiązanie kilku aspektów środowiskowych. Jednym z nich są testy sorpcji rtęci w celu opracowania nowych technologii oczyszczania spalin. Natomiast drugi aspekt porusza możliwość przedstawienia nowego kierunku zagospodarowania ubocznych produktów spalania, jakimi są popioły lotne.

Przejdź do artykułu

Abstrakt

Nadawa urobku węglowego kierowana do wzbogacania grawitacyjnego składa się z węgli pochodzących z różnych pokładów i frontów eksploatacyjnych. Węgle te różnią się parametrami jakościowymi, a zwłaszcza ilością skały płonnej (kamienia) zmieniającymi się w czasie. Skutkuje to niestabilnością pracy, w szczególności osadzarek. Posiadają one wówczas stosunkowo małą dokładność ocenianą wskaźnikami rozproszenia prawdopodobnego lub imperfekcji. Pogarsza to jakość otrzymywanego koncentratu, którego parametry jakościowe zmieniają się w czasie. Poprawa pracy osadzarek możliwa byłaby poprzez uśrednianie nadawy. Proces ten jest praktycznie niemożliwy ze względu na niezaprojektowanie takiego węzła podczas budowy zakładów, które są w większości przypadków powiązane bezpośrednio z szybem. W artykule autorzy proponują rozwiązanie procesu uśredniania nadawy przed skierowaniem jej do procesu wzbogacania w osadzarkach poprzez wprowadzenie jej odkamieniania w wibracyjno-powietrznych separatorach typu FGX.

Przejdź do artykułu

Abstrakt

W trakcie procesów wzbogacania węgla w zakładach przeróbki mechanicznej kopalń węgla kamiennego powstają znaczne ilości mułów węglowych (grupa odpadów 01). Są to najdrobniejsze frakcje ziarnowe poniżej 1 mm, w których ziarna poniżej 0,035 mm stanowią do 60% ich składu, a ciepło spalania kształtuje się na poziomie 10 MJ/kg. Charakterystyczną cechą mułów jest ich duża wilgotność, która po procesie odwodnienia na prasach filtracyjnych osiąga wartość od 16–28% (Wtot r) (materiały archiwalne PG SILESIA). Drobnoziarnistość i wysoka wilgotność materiału powodują duże trudności na etapie transportu, załadunku i wyładunku materiału. W pracy przedstawiono wyniki badań grudkowania (granulowania) mułów węglowych samodzielnie oraz grudkowania mułów węglowych z materiałem dodatkowym, który ma za zadanie poprawić właściwości energetyczne mułów. Sam proces grudkowania ma przede wszystkim poprawić możliwości transportowe. Podjęto wstępne badania pozwalające na wykazanie zmian parametrów poprzez sporządzanie mieszanek mułów węglowych (PG SILESIA) z pyłami węglowymi z węgla brunatnego (LEAG). Przeprowadzono proces grudkowania mułów oraz ich mieszanek na laboratoryjnym grudkowniku wibracyjnym konstrukcji AGH. W wyniku przeprowadzonych badań można stwierdzić, że wszystkie mieszanki są podatne na proces grudkowania (granulowania). Proces ten poszerza niewątpliwie możliwości transportowe materiału. Skład ziarnowy uzyskanego materiału po grudkowaniu jest zadawalający. Grudki o wymiarze 2–20 mm stanowią 90–95% masy produktu. Wytrzymałość (odporność) na zrzuty grudek świeżych jest zadawalająca i porównywalna dla wszystkich mieszanek. Świeże grudki poddane próbie na zrzuty z wysokości 700 mm wytrzymują od 7 do 14 zrzutów. Odporność na zrzuty grudek materiału po dłuższym sezonowaniu, z wysokości 500 mm wykazuje wartości odmienne dla analizowanych próbek. Wartości uzyskane dla mułów węglowych oraz ich mieszanek z pyłami węglowymi z węgla brunatnego kształtują się na poziomie 4–5 zrzutów. Uzyskana wytrzymałość jest wystarczająca dla stwierdzenia możliwości ich transportu. Na tym etapie pracy można stwierdzić, że dodatek pyłów węglowych z węgla brunatnego nie powoduje pogorszenia wytrzymałości materiału w odniesieniu do czystych mułów węglowych. Nie ma zatem negatywnego wpływu na możliwości transportu materiału zgranulowanego. W wyniku mieszania z pyłami węglowymi można natomiast podnieść ich wartość energetyczną (Klojzy-Karczmarczyk i in. 2018). Nie prowadzono analizy kosztowej analizowanego przedsięwzięcia.

Przejdź do artykułu

Redakcja

Kolegium Redakcyjne
  • Redaktor naczelny: Krzysztof Galos
  • Z-ca redaktora naczelnego: Lidia Gawlik
  • Redaktor tematyczny: Gospodarka surowcami
  • Sekretarz redakcji: Zbigniew Grudziński
  • Redaktor tematyczny: Paliwa i energia
  • Z-ca sekretarza redakcji: Zenon Pilecki
  • Redaktor tematyczny: Górnictwo i geoinżynieria
  • Redaktor statystyczny: Jacek Mucha
Komitet Wydawniczy
  • Emilia Rydzewska – redaktor językowy (polski)
  • Michelle Atallah – redaktor językowy (angielski)
  • Barbara Sudoł – redaktor techniczny

Kontakt

Instytut Gospodarki Surowcami Mineralnymi i Energia Polskiej Akademii Nauk
ul. J. Wybickiego 7, 31-261 Kraków
tel.: +48 12 6323300, faks: +48 12 6323524
e-mail: lidia.gawlik@min-pan.krakow.pl

https://min-pan.krakow.pl/wydawnictwo/czasopisma/zeszyty-naukowe-instytutu-surowcami-mineralnymi-i-energia-pan/

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji