Tytuł artykułu

Application of Density Based Clustering to Microarray Data Analysis

Tytuł czasopisma

International Journal of Electronics and Telecommunications




No 3

Autorzy publikacji

Wydział PAN

Nauki Techniczne


Polish Academy of Sciences Committee of Electronics and Telecommunications




ISSN 2081-8491 (until 2012) ; eISSN 2300-1933 (since 2013)


Bhattacharjee A. (2001), Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses, Proc. Natl. Acad. Sci. U. S. A, 98. ; Dudoit S. (2002), A prediction-based resampling method for estimating the number of clusters in a dataset, Genome Biol, 3. ; Ester M. (1996), A density-based algorithm for discovering clusters in large spatial databases with noise, null, 226. ; Golub T. (1999), Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 286, 531. ; Hartigan J. (1985), Statistical theory in clustering, J. Classification, 2, 1, 63. ; Heyer L. (1999), Exploring expression data: identification and analysis of coexpressed genes, Genome Res, 9, 1106. ; Johnson S. (1967), Hierarchical clustering schemes, Psychometrika, 32, 241. ; Kaufman L. (2005), Finding Groups in Data: An Introduction to Cluster Analysis (Wiley Series in Probability and Statistics). ; Kohonen T. (1984), Self-organization and associative memory, 8. ; Krzanowski W. (1988), A criterion for determining the number of groups in a data set using sum-of-squares clustering, Biometrics, 44, 1, 23. ; Lipshutz R. (1999), High density synthetic oligonucleotide arrays, Nat. Genet, 21, 20. ; MacQueen J. (1967), Some methods for classification and analysis of multivariate observations, null, I, 281. ; Schadt E. (2000), Analyzing high-density oligonucleotide gene expression array data, J. Cell. Biochem, 80, 192. ; Tibshirani R. (2001), Estimating the number of clusters in a data set via the gap statistic, Journal Of The Royal Statistical Society Series B, 63, 2, 411.