Details

Title

Microstructure and Microhardness of Ti6Al4V Alloy Treated by GTAW SiC Alloying

Journal title

Archives of Foundry Engineering

Yearbook

2012

Numer

No 2

Publication authors

Keywords

Titanium Alloy ; Arc Plasma Treatment ; alloying ; structure ; Fracture ; Microhardness

Divisions of PAS

Nauki Techniczne

Description

Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.

Abstract

In this work, the change of the structure and microhardness of Ti6Al4V titanium alloy after remelting and remelting with SiC alloing by electric arc welding (GTAW method) was studied. The current intensity equal 100 A and fixed scan speed rate equal 0,2 m/min has been used to remelting surface of the alloy. Change of structure were investigated by optical and scanning electron microscopy. Microhardness test showed, that the remelting of the surface does not change the hardness of the alloy. Treated by GTAW SiC alloying leads to the formation of hard (570 HV0, 1) surface layer with a thickness of 2 mm. The resulting surface layer is characterized by diverse morphology alloyed zone. The fracture of alloy after conventional heat treatment, similarly to fracture after remelting with GTAW is characterized by extremely fine dimples of plastic deformation. In the alloyed specimens the intergranular and crystalline fracture was identified.

Publisher

The Katowice Branch of the Polish Academy of Sciences

Date

2012

Type

Artykuły / Articles

Identifier

ISSN 2299-2944

References

Cao X. (2009), Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd:YAG laser, Optics and Lasers in Engineering, 47, 1231, doi.org/10.1016/j.optlaseng.2009.05.010 ; Garbacz H. (2008), Surface engineering techniques used for improving the mechanical and tribological properties of the Ti6A14V alloy, Surface & Coatings Technology, 202, 2453, doi.org/10.1016/j.surfcoat.2007.08.068 ; Yong L. (2009), Microstructure analysis and wear behavior of titanium cermet femoral head with hard TiC layer, Journal of Biomechanics, 42, 2708, doi.org/10.1016/j.jbiomech.2009.08.003 ; Filip R. (2006), Mikrostruktura i właściwości użytkowe warstwy wierzchniej stopu tytanu Ti-6Al-4V kształtowanej metodą stopowania laserowego, Inżynieria Materiałowa, 3. ; Filip R. (2006), Alloying of surface layer of the Ti-6Al-4V titanium alloy through the laser treatment, Journal of Achievements in Materials and Manufacturing Engineering, 15, 174. ; A Lisiecki (2008), Diode laser surface modification of, Ti6Al4V alloy Ti improve erosion wear resistance, Archives of Materials Science and Engineering, 32, 5. ; Liqun L. (2009), Electron microscopy study of reaction layers between single-crystal WC particle and Ti-6Al-4V after laser melt injection, Acta Materialia, 57, 3606, doi.org/10.1016/j.actamat.2009.04.021 ; Ossowska A. (2010), Influence of Laser Melting on Surface Layer Properties of Titanium Alloy Ti6Al4V, Journal of Biomechanic, 43, 1, 55, doi.org/10.1016/S0021-9290(10)70116-0 ; Dudek A. (2009), Residual stress state in titanium alloy remelted using GTAW method, Archives of Foundry Engineering, 9, 2, 193. ; Pleshakov E. (2002), Laser surface modification of Ti-6Al-4V alloy with silicon carbide, Materials Science, 38, 5, 646, doi.org/10.1023/A:1024254121809 ; Saresh N. (2007), Investigations into the effects of electron beam welding on thick Ti-6Al-4V titanium alloy, Journal of Materials Processing Technology, 192-193, 83, doi.org/10.1016/j.jmatprotec.2007.04.048 ; Yuan-Ching L. (2011), Microstructure and tribological performance of Ti-6Al-4V cladding with SiC powder, Surface & Coatings Technology, 205, 5400, doi.org/10.1016/j.surfcoat.2011.06.001

DOI

10.2478/v10266-012-0070-5

×