Details

Title

Analysis of Structure and Abrasion Resistance of the Metal Composite Based on an Intermetallic FeAl Phase with VC and TiC Precipitates

Journal title

Archives of Foundry Engineering

Yearbook

2013

Numer

No 3

Publication authors

Keywords

Aluminium cast iron ; Al4C3 ; TiC ; VC ; Intermetallic FeAl ; Iron aluminides

Divisions of PAS

Nauki Techniczne

Description

Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.

Abstract

Metal alloys with matrix based on an Fe-Al system are generally considered materials for high-temperature applications. Their main advantages are compact crystallographic structure, long-range ordering and structural stability at high temperatures. These materials are based on an intermetallic phase of FeAl or Fe3Al, which is stable in the range from room temperature up to the melting point of 1240°C. Their application at high temperatures is also beneficial because of the low cost of production, very good resistance to oxidation and corrosion, and high mechanical strength. The casting alloy the structure of which includes the FeAl phase is, among others, highaluminium cast iron. This study has been devoted to the determination of the effect of vanadium and titanium on the transformation of the high-aluminium cast iron structure into an in-situ FeAl-VC composite.

Publisher

The Katowice Branch of the Polish Academy of Sciences

Date

2013

Type

Artykuły / Articles

Identifier

ISSN 2299-2944

DOI

10.2478/afe-2013-0058

×