Characterization of Coatings on Grey Cast Iron Fabricated by Hot-dipping in Pure Al, AlSi11 and AlTi5 Alloys

Journal title

Archives of Foundry Engineering




No 1

Publication authors


Hot-dip aluminizing ; Flake graphite cast iron ; Intermetallic phases ; microstructure

Divisions of PAS

Nauki Techniczne


Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.


Flake graphite cast iron was hot-dip coated with pure aluminium or aluminium alloys (AlSi11 and AlTi5). The study aimed at determining

the influence of bath composition on the thickness, microstructure and phase composition of the coatings. The analysis was conducted by

means of an optical microscope and a scanning electron microscope with an EDS spectrometer. It was found that the overall thickness of a

coating was greatly dependent on the chemical composition of a bath. The coatings consisted of an outer layer and an inner intermetallic

layer, the latter with two zones and dispersed graphite. In all the cases considered, the zone in the inner intermetallic layer adjacent to the

cast iron substrate contained the Al5Fe2 phase with small amount of silicon; the interface between this phase and the cast iron substrate

differed substantially, depending on the bath composition. In the coatings produced by hot-dipping in pure aluminium the zone adjacent to

the outer layer had a composition similar to that produced from an AlTi5 bath, the Al3Fe phase was identified in this zone. The Al3Fe also

contained silicon but its amount was lower than that in the Al5Fe2. In the coatings produced by hot-dipping in AlSi11, the zone adjacent to

the outer layer contained the Al3FeSi phase. The analysis results showed that when AlSi11 alloy was applied, the growth mode of the inner

layer changed from inwards to outwards. The interface between the Al5Fe2 phase and the cast iron substrate was flat and the zone of this

phase was very thin. Locally, there were deep penetrations of the Al5FeSi phase into the outer layer, and the interface between this phase

and the outer layer was irregular. Immersion in an AlTi5 bath caused that the inner intermetallic layer was thicker than when pure

aluminium or AlSi11 alloy baths were used; also, some porosity was observed in this layer; and finally, the interface between the inner

layer and the cast iron substrate was the most irregular.


The Katowice Branch of the Polish Academy of Sciences




Artykuły / Articles


ISSN 2299-2944