Details

Title

The Influence of Chemical Surface Treatment on the Corrosion Resistance of Titanium Castings Used in Dental Prosthetics

Journal title

Archives of Foundry Engineering

Yearbook

2014

Numer

No 3

Publication authors

Keywords

Titanium castings ; Prosthetic components ; Abrasive blasting ; Chemical treatment ; Corrosion tests

Divisions of PAS

Nauki Techniczne

Description

Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.

Abstract

Air abrasion process is used for cleaning casting surface of prosthetic components, and to prepare the surface of these elements for the

application of veneering items. Its side effect, however, is that abrasive particles are embedded in the treated surface, which can be up to

30% of the surface and it constitutes the side effect of this procedure. Such a significant participation of foreign material can not be

indifferent to the properties of the surface. Embedded particles can be the place of stress concentration causing cracking of ceramics, and

may deteriorate corrosion resistance by forming corrosive microlinks. In the latter cases, it would be advisable to remove elements

embedded into the surface. The simplest method is chemical etching or electrochemical one. Nevertheless, these procedures should not

significantly change the parameters of the surface. Among many possible reagents only a few fulfills all the above conditions. In addition,

processing should not impair corrosion resistance of titanium, which is one of the most important factors determining its use as a prosthetic

restoration in the mouth. The study presented results of corrosion resistance of titanium used to make prosthetic components by means of

casting method, which were subjected to chemical processing designed to remove the embedded abrasive particles. The aim of the study

was to investigate whether etching with selected reagents affects the corrosion resistance of titanium castings. For etching the following

reagents were used: 30% HNO3 + 3% HF + H2O, HNO3+ HF+ glycerol (1:2:3), 4% HF in H2O2, 4% HF in H2O, with a control

sandblasted sample, not subjected to etching. Tests demonstrated that the etching affected corrosion properties of test samples, in each case

the reduction of the corrosion potential occurred - possibly due to the removal of particles of Al2O3 from the surface and activation of the

surface. None of the samples underwent pitting corrosion as a result of polarization to 9 V. Values of the polarization resistance, and

potentiodynamic characteristics indicated that the best corrosion resistance exhibited the samples after etching in a mixture of 4% solution

of HF in H2O2. They showed very good passivation of the surface.

Publisher

The Katowice Branch of the Polish Academy of Sciences

Date

2014

Type

Artykuły / Articles

Identifier

ISSN 2299-2944

DOI

10.2478/afe-2014-0052

×