Szczegóły

Tytuł artykułu

Evaluation of Heat Capacity and Resistance to Cyclic Oxidation of Nickel Superalloys

Tytuł czasopisma

Archives of Foundry Engineering

Rocznik

2014

Numer

No 3

Autorzy publikacji

Słowa kluczowe

Foundry technology ; Nickel superalloys ; Heat resistance ; DSC calorimeter ; Heat capacity

Wydział PAN

Nauki Techniczne

Opis

Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.

Abstrakt

Paper presents the results of evaluation of heat resistance and specific heat capacity of MAR-M-200, MAR-M-247 and Rene 80 nickel

superalloys. Heat resistance was evaluated using cyclic method. Every cycle included heating in 1100°C for 23 hours and cooling for 1

hour in air. Microstructure of the scale was observed using electron microscope. Specific heat capacity was measured using DSC

calorimeter. It was found that under conditions of cyclically changing temperature alloy MAR-M-247 exhibits highest heat resistance.

Formed oxide scale is heterophasic mixture of alloying elements, under which an internal oxidation zone was present. MAR-M-200 alloy

has higher specific heat capacity compared to MAR-M-247. For tested alloys in the temperature range from 550°C to 800°C precipitation

processes (γ′, γ′′) are probably occurring, resulting in a sudden increase in the observed heat capacity.

Wydawca

The Katowice Branch of the Polish Academy of Sciences

Data

2014

Typ

Artykuły / Articles

Identyfikator

ISSN 2299-2944

DOI

10.2478/afe-2014-0064

×