Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

Journal title

Archives of Foundry Engineering




No 3

Publication authors


Synthetic cast iron ; Grey cast iron ; Silicon carbide ; Ferrous alloys carburization ; Cast iron microstructure

Divisions of PAS

Nauki Techniczne


Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.


The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon

carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal

surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the

paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its

chemical composition (30% C and 70% Si) which causes significant silicon content in iron increase, the carbon deficit can be partly

compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the

silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is

almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon

carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.


The Katowice Branch of the Polish Academy of Sciences




Artykuły / Articles


ISSN 2299-2944