The Relationship Between the Solidification Parameters and Chemical Composition of Nickel Superalloy IN-713C

Journal title

Archives of Foundry Engineering




No 4

Publication authors


Innovative casting materials and technologies ; Nickel alloy IN-713C ; ATD thermal analysis ; Solidification parameters

Divisions of PAS

Nauki Techniczne


Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.


The paper presents the results of studies on the development of correlation of solidification parameters and chemical composition of nickel

superalloy IN-713C, which is used i.a. on aircraft engine turbine blades. Previous test results indicate significant differences in

solidification parameters of the alloy, especially the temperatures Tliq and Tsol for each batch of ingots supplied by the manufacturer.

Knowledge of such a relationship has important practical significance, because of the ability to asses and correct the temperatures

of casting and heat treatment of casts on the basis of chemical composition. Using the statistical analysis it was found that the temperature

of the solidification beginning Tliq is mostly influenced by the addition of carbon (similar to iron alloys). The additions of Al and Nb have

smaller but still significant impact. Other alloying components do not have significant effect on Tliq. The temperature Teut is mostly

affected by Ni, Ti and Nb. The temperature Tsol is not in any direct correlation with the chemical composition, which is consistent with

previous research. The temperature Tsol depends primarily on the presence of non-metallic inclusions present in feed materials and

introduced during the melting and casting processes.


The Katowice Branch of the Polish Academy of Sciences




Artykuły / Articles


ISSN 2299-2944