Anisotropic in Situ Metal Matrix Composite Reinforced with VC Carbide Fibres

Journal title

Archives of Foundry Engineering




No 1

Publication authors


Cast composites ; Directional solidification ; Vanadium eutectic ; Vanadium carbides ; Microstructure

Divisions of PAS

Nauki Techniczne


Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.


A eutectic reaction is a basic liquid-solid transformation, which can be used in the fabrication of high-strength in situ composites.

In this study an attempt was made to ensure directional solidification of Fe-C-V alloy with hypereutectic microstructure. In this alloy, the

crystallisation of regular fibrous eutectic and primary carbides with the shape of non-faceted dendrites takes place. According to the data

given in technical literature, this type of eutectic is suitable for the fabrication of in-situ composites, owing to the fact that a flat

solidification front is formed accompanied by the presence of two phases, where one of the phases can crystallise in the form of elongated


In the present study an attempt was also made to produce directionally solidifying vanadium eutectic using an apparatus with a very high

temperature gradient amounting to 380 W/cm at a rate of 3 mm/h. Alloy microstructure was examined in both the initial state and after

directional solidification. It was demonstrated that the resulting microstructure is of a non-homogeneous character, and the process of

directional solidification leads to an oriented arrangement of both the eutectic fibres and primary carbides.


The Katowice Branch of the Polish Academy of Sciences


2015[2015.01.01 AD - 2015.12.31 AD]


Artykuły / Articles


ISSN 2299-2944