Tytuł artykułu

Burkholderia SP. Strain TNAU-1 for Biological Control of Root Rot in Mung Bean (Vigna Radiata L.) Caused by Macrophomina Phaseolina

Tytuł czasopisma

Journal of Plant Protection Research




No 3

Autorzy publikacji

Wydział PAN

Nauki Biologiczne i Rolnicze


Polish Society of Plant Protection ; Committee of Plant Protection PAS ; Institute of Plant Protection – National Research Institute




eISSN 1899–007X ; ISSN 1427–4345


Baki A. (1973), Vigour determination in soybean seed by multiple criteria, Crop Sci, 31, 630, ; Baligh M. (1999), Evaluation of Burkholderia cepacia strains: Root colonization of Catharanthus roseus and in vitro inhibition of selected soil-borne fungal pathogens, Proc. Oklahama Acad. Sci, 79, 19. ; Cain C. (2000), Identification and characteristics of a novel Burkholderia strain with broad-spectrum antimicrobial activity, Appl. Environ. Microbiol, 66, 4139, ; Chen C. (1995), Biological control of Fusarium wilt on cotton by use of endophytic bacteria, Biol. Control, 5, 83, ; Dennis C. (1971), Antagonistic properties of species groups of Trichoderma 1. Production of non-volatile antibiotics, Trans. Br. Mycol. Soc, 57, 25, ; Dhingra O. (1978), Biology and Pathology of <i>Macrophomina phaseolina</i>, 166. ; Dikin A. (2003), Biological control of seedborne pathogen of oil palm, Schizophyllum commune Fr. with antagonistic bacteria, Int. J. Agric. Biol, 5, 507. ; Gomez K. (1984), Statistical Procedure for Agricultural Research, 680. ; Hebbar K. (1998), Suppression of pre and post-emergence damping-off in corn by Burkholderia cepacia, Eur. J. Plant Pathol, 104, 29, ; Heungens K. (2000), Zoospore homing and infection events: Effects of the biocontrol bacteria Burkholderia cepacia AMMDR1 on two oomycete pathogen of pea (Pisum sativum L.), Appl. Environ. Microbiol, 66, 192. ; Heydari A. (1998), Biocontrol activity of Burkholderia cepacia against Rhizoctonia solani in herbicide-treated soils, Plant Soil, 202, 109, ; Hwang J. (2002), Biocontrol of Rhizoctonia stem and root rot of poinsettia with Burkholderia cepacia and binucleate Rhizoctonia, Plant Dis, 86, 47, ; Indira N. (2003), Management of blackgram root rot caused by Macrophomina phaseolina by antagonistic micro-organisms, Madras Agric. J, 90, 490. ; International Seed Testing Association. 1996. International Rules for Seed Testing. Seed Sci. Technol Supp. 24: 155-202. ; Janisewiez W. (1988), Biological control of blue mold and gray mold on apple and pear with Pseudomonas cepacia, Phytopathology, 78, 1697, ; Karthikeyan M. (2005), Endophytic Pseudomonas fluorescens Endo2 and Endo35 induce resistance in black gram [Vigna mungo (L.) Hepper] to the pathogen Macrophomina phaseolina, J. Plant Interact, 1, 135, ; King E. (1993), Biocontrol of Aphanomyces root rot and Pythium damping-off by Pseudomonas cepacia AMMD on four pea cultivars, Plant Dis, 77, 1185, ; Li W. (2002), Broad spectrum antibiotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F, Crop Protect, 21, 129, ; Lievens K. (1989), Dominant rhizosphere bacteria as a source of antifungal agents, Pestic. Sci, 27, 141, ; Meyer J. (1989), Cepabactin from Pseudomonas cepacia, a new type of siderophores, J. Gen. Microbiol, 135, 1479. ; Muthomi J. (2007), Effect of legume root rot pathogens and fungicide seed treatment on nodulation and biomass accumulation, J. Biol. Sci, 7, 1163, ; Parke J. (1991), Biological control of Pythium damping-off and Aphanomyces root rot of peas by application of Pseudomonas cepacia or Pseudomonas fluorescens to seed, Plant Dis, 75, 987, ; Raguchander T. (1993), Biocontrol of Macrophomina root rot of mungbean, Indian Phytopathol, 46, 379. ; Rajendran L. (2008), Endophytic Bacillus species confer increased resistance in cotton against damping off disease caused by Rhizoctonia solani, Plant Pathol, 7, 1, ; Rettinassababady C. (2002), Management of root rot [Macrophomina phaseolina (Tassi.) Goid] of rice fallow blackgram by resident isolates of Trichoderma viride, Indian J. Agric. Res, 36, 118. ; Riker A. (1936), Introduction to Research on Plant Disease, 117. ; Saravanakumar D. (2007), Rhizobacterial formulation for the effective management of Macrophomina root rot in mungbean, Arch. Phytopathol. Plant Protect, 40, 323, ; Sijam K. (2005), Biochemical and physiological characterization of Burkholderia cepacia as biological control agent, Int. J. Agri. Biol, 7, 385. ; Su G. (2001), Host specialization in the charcoal rot fungus, Macrophomina phaseolina, Phytopathology, 92, 120, ; Suparman M. (2002), In vitro Screening of Antagonistic Bacteria against Fusarium oxysporum f.sp. lycopersici, null, 24. ; Taylor S. (2005), Nitrogen application increases yield and early dry matter accumulation in late-planted soybean crop, Sci. J, 45, 854. ; Thilagavathi R. (2007), A combination of biocontrol agents improves the management of dry root rot (Macrophomina phaseolina) in greengram, Phytopathol. Mediterr, 46, 157. ; Thompson D. (1996), Evaluation of bacterial antagonist for reduction of summer patch symptoms in Kentucky blue grass, Plant Dis, 80, 856, ; Vijayasamundeeswari A. (2010), Integrated management of aflatoxin B<sup>1</sup> contamination of groundnut (Arachis hypogaea L.) with Burkholderia sp. and zimmu (Allium sativum L. x Allium cepa L.) intercropping, J. Plant Interact, 5, 59, ; Watanabe T. (2000), Potential of antagonistic isolate obtained from Lentinus lepideus basidiospores as a biocontrol agent, Mycoscience, 41, 79, ; Wyllie T. (1993), Compendium of Soybean Diseases, 30.