Contribution to Deoxidation of Austenitic Steels in a Vacuum Induction Furnace with Carbon

Journal title

Archives of Foundry Engineering




No 2

Publication authors


Vacuum induction furnace ; Deoxidation with carbon ; Steel for petrochemistry ; Oxygen activity ; Total oxygen

Divisions of PAS

Nauki Techniczne


Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.


Deoxidation of steel with carbon under reduced pressure is often used for increasing the steel purity. Suitable units for this purpose in

foundries are vacuum induction furnaces. Possibilities of increasing the steel purity by deoxidation with carbon in the vacuum induction

furnace were studied for the steel for the petrochemistry of specific composition 25Cr/35Ni. The charge composed of the return material

only was melted in the air. During melting the charge oxidized and the oxidizing slag formed. Chemical composition of steel, morphology,

chemical composition of inclusions in the steel and chemical composition of slag after vacuuming were studied on the basis of samples

taken before and after vacuuming. Temperature and oxygen activity were measured before and after vacuuming. Globular inclusions with

dominant content of silicon and manganese were observed in steel before and after vacuuming. Contents of total oxygen in steel didn’t

change significantly during vacuuming. On the basis of composition of inclusions and measured oxygen activity the activity of Cr2O3


inclusions was calculated. A slag sample was taken after vacuuming and equilibrium oxygen activity in steel with regard to the Cr2O3

content in the slag was estimated from the slag composition. Equilibrium oxygen activity in relation to the Cr2O3 content in the slag was

higher than equilibrium activity measured in the steel. For this reason it is not possible, under the studied conditions, to decrease oxygen

content in steel during vacuuming.


The Katowice Branch of the Polish Academy of Sciences


2015[2015.01.01 AD - 2015.12.31 AD]


Artykuły / Articles


ISSN 2299-2944