Szczegóły

Tytuł artykułu

Identifying Mycelial Compatibility Groups of Sclerotinia Sclerotiorum Using Potato Dextrose Agar Amended with Activated Charcoal

Tytuł czasopisma

Journal of Plant Protection Research

Rocznik

2012

Wolumin

vol. 52

Numer

No 1

Autorzy publikacji

Wydział PAN

Nauki Biologiczne i Rolnicze

Wydawca

Institute of Plant Protection – National Research Institute ; Committee of Plant Protection PAS

Data

2012

Identyfikator

eISSN 1899–007X ; ISSN 1427–4345

Referencje

Adams P. (1979), Ecology of <i>Sclerotinia</i> species, Phytopathology, 69, 8, 896, doi.org/10.1094/Phyto-69-896 ; Anderson J. (1995), Clonality in soilborne, plant-pathogenic fungi, Annu. Rev. Phytopathol, 33, 3, 369, doi.org/10.1146/annurev.py.33.090195.002101 ; Atallah Z. (2004), Development of Sclerotinia stem rot in potato fields in south-central Washington, Plant Dis, 88, 4, 419, doi.org/10.1094/PDIS.2004.88.4.419 ; Atallah Z. (2004), High genetic diversity, phenotypic uniformity, and evidence of outcrossing in <i>Sclerotinia sclerotiorum</i> in the Columbia basin of Washington state, Phytopathology, 94, 8, 737, doi.org/10.1094/PHYTO.2004.94.7.737 ; Ben-Yephet Y. (1985), Use of a selective medium to study the dispersal of ascospores of <i>Sclerotinia sclerotiorum</i>, Phytoparasitica, 13, 1, 33, doi.org/10.1007/BF02994435 ; Butler E. (1973), A medium for heterokaryon formation in <i>Rhizoctonia solani</i>, Phytopathology, 63, 5, 542. ; Carbone I. (1999), Patterns of descent in clonal lineages and their multilocus fingerprints are resolved with combined gene genealogies, Evolution, 53, 1, 11, doi.org/10.2307/2640916 ; Carbone I. (2001), A microbial population - species interface: nested cladistic and coalescent inference with multilocus data, Mol. Ecol, 10, 4, 947, doi.org/10.1046/j.1365-294X.2001.01244.x ; Carpenter M. (1999), Genetic variation in New Zealand populations of the plant pathogen <i>Sclerotinia sclerotiorum</i>, N. Z. J. Crop Hortic. Sci, 27, 1, 13, doi.org/10.1080/01140671.1999.9514075 ; Ceresini P. (2002), Genetic diversity of <i>Rhizoctonia solani</i> AG-3 from potato and tobacco in North Carolina, Mycologia, 94, 3, 437, doi.org/10.2307/3761778 ; Cubeta M. (1997), Clonality in <i>Sclerotinia sclerotiorum</i> on infected cabbage in Eastern North Carolina, Phytopathology, 87, 10, 1000, doi.org/10.1094/PHYTO.1997.87.10.1000 ; Durman S. (2001), Mycelial compatibility groups in <i>Sclerotinia sclerotiorum</i> from agricultural fields in Argentina, null, 27. ; Glass N. (2000), The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi, Annu. Rev. Gen, 34, 2, 165. ; Grau C. (1984), Effects of cultivars and cultural practices on Sclerotinia stem rot of soybeans, Plant Dis, 68, 1, 56. ; Hambleton S. (2002), Clonal lineages of <i>Sclerotinia sclerotiorum</i> previously known from other crops predominate in 1999-2000 samples from Ontario and Quebec soybean, Can. J. Plant Pathol, 24, 3, 309, doi.org/10.1080/07060660209507014 ; Hartman G. (1999), Compendium of Soybean Diseases, 128. ; Hemmati H. (2009), Population genetic structure of <i>Sclerotinia sclerotiorum</i> on canola in Iran, Eur. J. Plant Pathol, 125, 4, 617, doi.org/10.1007/s10658-009-9510-7 ; Kohli Y. (1995), Clonal dispersal and spatial mixing in populations of the plant-pathogenic fungus, <i>Sclerotinia sclerotiorum</i>, Mol. Ecol, 4, 1, 69, doi.org/10.1111/j.1365-294X.1995.tb00193.x ; Kohli Y. (1992), Local and trans - Canadian clonal distribution of <i>Sclerotinia sclerotiorum</i> on canola, Phytopathology, 82, 8, 875, doi.org/10.1094/Phyto-82-875 ; Kohn L. (1995), The clonal dynamic in wild and agricultural plant-pathogen populations, Can. J. Bot, 73, 1, 1231, doi.org/10.1139/b95-383 ; Kohn L. (1990), Mycelial interactions in <i>Sclerotinia sclerotiorum</i>, Exp. Mycol, 14, 3, 255. ; Kohn L. (1991), Mycelial incompatibility and molecular markers identify genetic variability in field populations of <i>Sclerotinia sclerotiorum</i>, Phytopathology, 81, 4, 480, doi.org/10.1094/Phyto-81-480 ; Kull L. (2004), Mycelial compatibility grouping and aggressiveness of <i>Sclerotinia sclerotiorum</i>, Plant Dis, 88, 4, 325, doi.org/10.1094/PDIS.2004.88.4.325 ; Leslie J. (1993), Fungal vegetative compatibility, Annu. Rev. Phytopathol, 31, 1, 127, doi.org/10.1146/annurev.py.31.090193.001015 ; Mitchell S. (1990), Factors affecting the production of apothecia and longevity of sclerotia of <i>Sclerotinia sclerotiorum</i>, Plant Pathol, 39, 1, 70, doi.org/10.1111/j.1365-3059.1990.tb02477.x ; Natti J. (1971), Epidemiology and control of bean white mold, Phytopathology, 61, 6, 669, doi.org/10.1094/Phyto-61-669 ; Ojaghian M. (2009), First report of <i>Sclerotinia sclerotiorum</i> on potato plants in Iran, Australians Plant Dis. Notes, 4, 1, 39. ; Patterson C. L. 1985. The Comparative Biology, Epidemiology, and Control of Lettuce Drop Caused by <i>Sclerotinia minor</i> and <i>S. sclerotiorum</i>, and the Genetic Analysis of Vegetative and Sexual Compatibility in <i>S. minor</i>. Ph.D. thesis. Davis: University of California, p. 69. ; Puhalla J. (1985), Classification of strains of <i>Fusarium oxysporum</i> on the basis of vegetative compatibility, Can. J. Bot, 63, 2, 179, doi.org/10.1139/b85-020 ; Schafer M. (2006), An optimized method for mycelial compatibility testing in <i>Sclerotinia sclerotiorum</i>, Mycologia, 98, 4, 593, doi.org/10.3852/mycologia.98.4.593 ; Vogel H. (1964), Distribution of lysine pathways among fungi: Evolutionary implications, Am. Nat, 98, 6, 435, doi.org/10.1086/282338 ; Willetts H. (1980), The biology of <i>Sclerotinia sclerotiorum, S. trifoliorum</i>, and <i>S. minor</i> with emphasis on specific nomenclature, Bot. Rev, 46, 2, 101, doi.org/10.1007/BF02860868

DOI

10.2478/v10045-012-0013-8

×