Proteolytic Activity in the Midgut of the Crimson Speckled Moth Utethesia Pulchella L. (Lepidoptera: Arctiidae)

Journal title

Journal of Plant Protection Research




vol. 52


No 3

Publication authors

Divisions of PAS

Nauki Biologiczne i Rolnicze


4 issues per year.

The online version of Journal of Plant Protection Research (JPPR) is the original one.

Rejection rate – over 70%.

Journal of Plant Protection Research is an international peer-reviewed journal that publishes original papers, rapid communications, reviews, covering all areas of plant protection. Subjects include phytopathological virology, bacteriology, mycology and applied nematology and entomology as well as topics on protecting crop plants and stocks of crop products against diseases, viruses, weeds etc.

The Journal is published by Institute of Plant Protection – National Research Institute and Committee on Agronomic Sciences of the Polish Academy of Sciences. By 1997 under the title Prace Naukowe Instytutu Ochrony Roślin and Annals of Agricultural Sciences - Series E - Plant Protection).

Journal scope

JPPR publishes original research papers, rapid communications, critical reviews, and book reviews covering all areas of modern plant protection. Subjects include phytopathological virology, bacteriology, mycology and applied nematology and entomology as well as topics on protecting crop plants and stocks of crop products against diseases, viruses, weeds etc. We publish papers which use an interdisciplinary approach showing how different control strategies can be integrated into pest management programmes, which cover high and low input agricultural systems worldwide, within the framework of ecologically sound and economically responsible land cultivation.

Relevant topics include: advanced methods of diagnostic, and computer-assisted diagnostic plant research and new findings, biological methods of plant protection, selective chemical methods of plant protection, the effects of plant-protecting agents and their toxicology, methods to induce and utilize crop resistance, application techniques, and economic aspects of plant protection.

Journal of Plant Protection Research is also available on:

The Journal does not have article processing charges (APCs) nor article submission charges.

Journal of Plant Protection Research is published based on the Open Access model.

JPPR is a member of CrossRef – the citation-linking backbone for online publications.

JPPR is indexed/abstracted in:

AGRICOLA, AGRIS, AGRO, BIOSIS Preview, CABI, Chemical Abstracts Services (CAS), DOAJ (Directory of Open Access Journals), EBSCO, FSTA - Food Science & Technology Abstracts, Geobase, Google Scholar, Index Copernicus, Japan Science and Technology Agency (JST), J-Gate, JournalGuide, JournalTOCs, KESLI-NDSL (Korean National Discovery for Science Leaders), Microsoft Academic, Naviga (Softweco), Paperbase, Pirabase, POL-index, Polish Scientific Journals Contents, Polymer Library, Primo Central (ExLibris), ProQuest (relevant databases), Publons, ReadCube, SCOPUS, Sherpa/RoMEO, Summon (Serials Solutions/ProQuest), TDNet, Ulrich's Periodicals Directory/ulrichsweb, WanFang Data, WorldCat (OCLC), Zoological Record.

It is also ranked in SCImago Journal & Country Rank in three categories: Agronomy and Crop Science – Q2, Plant Science – Q2, and Soil Science – Q2 (June 2017).


Committee of Plant Protection PAS ; Institute of Plant Protection – National Research Institute




eISSN 1899–007X ; ISSN 1427–4345


Applebaum S. (1985), Comparative Insect Physiology, Biochemistry and Pharmacology, 279. ; Bernardi B. (1996), Isolation and some molecular properties of a trypsin-like enzyme from larvae of European corn borer <i>Ostrinia nubilalis</i> Hübner (Lepidoptera: Pyralidae), Insect. Biochem. Mol. Biol, 26, 9, 883, ; Bradford M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analyt. Biochem, 72, 2, 248, ; Broadway R. (1995), Are insects resistant to plant proteinase inhibitors?, J. Insect. Physiol, 41, 2, 107, ; Broadway R. (1986), Plant proteinase inhibitors: Mechanism of action and effect on the growth and digestive physiology of larval <i>Heliothis zea</i> and Spodoptera exigua, J. Insect. Physiol, 32, 10, 827, ; Chougule N. (2008), Biochemical characterization of midgut digestive proteases from <i>Mamestra brassicae</i> (cabbage moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays, J. Insect Physiol, 54, 3, 563, ; Christeller J. (1992), Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and proteases inhibitory interactions, Insect. Biochem. Mol. Biol, 22, 7, 248, ; Cohen A. (1993), Organization of digestion and preliminary characterization of salivary trypsin like enzymes in a predaceous Heteropteran, Zelus renadii, J. Insect. Physiol, 39, 10, 823, ; Eguchi M. (1982), Interrelation of proteases from the midgut lumen, epithelia and peritrophic membrane of the silkworm, <i>Bombyx mori</i>, L. Comp. Biochem. Physiol. (A), 72, 2, 359, ; Elpidina E. (2001), Compartmentalization of proteinases and amylases in Nauphoeta cinerea midgut, Arch. Insect. Biochem. Physiol, 48, 4, 206, ; Farmer E. (1992), Octadecanoid precursors of jasmonic acid activate the syntesis of wound-inducible proteinase inhibitors, Plant. Cell, 4, 2, 129. ; Folin O. (1927), On tyrosine and tryptophane determinations in proteins, J. Biol. Chem, 73, 627. ; Garcia-Carreno F. (1993), Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous protease inhibitors, Analyt. Biochem, 214, 1, 61. ; Gatehouse A. (1998), Identifying proteins with insecticidal activity: use of encoding genes to produce insect-resistant transgenic crops, Pest. Sci, 52, 2, 165,<165::AID-PS679>3.0.CO;2-7 ; Gatehouse A. (1999), Digestive proteolytic activity in larvae of tomato moth, <i>Lacanobia oleracea</i>; effects of plant proteinase inhibitors <i>in vitro</i> and <i>in vivo.</i>, J. Insect Physiol, 45, 6, 545, ; Gazzoni D. (1998), Mathematical simulation model of the velvetbean caterpillar, Pesquisa Agropecuária Brasileira, 33, 385. ; Gorman M. (2000a), Molecular characterization of five serine protease genes cloned from <i>Anopheles gambiae</i> hemolymph Insect Biochem, Mol. Biol, 30, 1, 35. ; Gorman M. (2000b), Sp22D: a multidomain serine protease with a putative role in insect immunity, Gene, 251, 1, 9, ; Harrison J. (2001), Insect acid-base physiology, Ann. Rev. Entomol, 46, 221. ; Hegedus D. (2003), Midgut proteases from <i>Mamestra configurata</i> (Lepidoptera: Noctuidae) larvae: characterization, cDNA cloning and expressed sequence tag analysis, Arch. Insect Biochem. Physiol, 53, 1, 30, ; Hilder V. (1987), A novel mechanism of insect resistance engineered into tobacco, Nature, 330, 160, ; Kuriyama K. (1985), Conversion of the molecular form alkaline treatment of gut protease from the silkworm Bombyx mori, Comp. Biochem. Physiol. (B), 82, 4, 575. ; Laemmli U. (1970), Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, ; Lee M. (1995), Endoproteases from the midgut of larval <i>Spodoptera littoralis</i> includes a chymotrypsin-like enzyme with an extended binding site, Insect. Biochem. Mol. Biol, 25, 1, 49, ; Ma C. (2000), A beta 1,3-glucan recognition protein from an insect, <i>Manduca sexta</i> agglutinates microorganisms and activates the phenoloxidase cascade, J. Biol. Chem, 275, 7505, ; Marchetti S. (1998), Isolation and partial characterization of two trypsins from the larval midgut of <i>Spodoptera littoralis</i> (Boisduval), Insect Biochem. Mol. Biol, 28, 11, 449, ; Mohammadi D. (2010), Activity and some properties of <i>Helicoverpa armigera</i> Hubner and <i>Spodoptera exigua</i> Hubner (Lep.: Noctuidae) midgut protease, Munis. Entomol. Zool, 5, 2, 697. ; Nakajima Y. (1997), A novel protease in the pupal yellow body of <i>Sarcophaga peregrine</i> (flesh fly), J. Biol. Chem, 272, 38, 23805, ; Ozgur E. (2009), Identification and characterization of hydrolytic enzymes from the midgut of Sunn Pest of wheat (<i>Eurygaster integriceps</i>), Int. J. Pest Manage, 55, 4, 359, ; Purcell J. (1992), Examination of midgut luminal proteinase activities in six economically important insects, Insect Biochem. Mol. Biol, 22, 1, 41, ; Ranjbar M. (2011), Proteolytic activity in the midgut of <i>Ectomyelois ceratoniae</i> Zeller (Lepidoptera: Pyralidae), Pomegranate carob moth, Res. Rep, 8, 2, 132. ; Ryan C. (1990), Proteinase inhibitors in plants: genes improving defenses against insects and pathogens, Ann. Rev. Phytopathol, 28, 425, ; Samuels R. (1993), cuticle degrading proteinase from the moulting fluid of the tobacco hornworm, <i>Manduca sexta.</i> Insect Biochem, Mol. Biol, 23, 5, 607. ; SAS Institute. 1997. SAS/STAT User's guide for personal computers. SAS Institute, Cary, NC. ; Shaw E. (1965), Evidence for an active-center hystidine in trypsin through use of a specific reagent 1-chloro-3-tosylamido-7-amino-2-heptanona, the chloromethyl ketone derived from <i>N</i>-tosyl-L-lysine, Biochem, 4, 10, 2219, ; Teo L. (1990), Digestive enzymes of the velvetbean caterpillar (Lepidoptera: Noctuidae), Ann. Entomol. Soc. Am, 88, 820, ; Terra W. (1994), Insect digestive enzymes: properties, compartmentalization and function, Com. Biochem. Physiol. (B), 109, 1, 1. ; Terra W. (2005), Comprehensive Molecular Insect Science, 171, ; Zibaee A. (2011), Purification and characterization of phenoloxidase from the hemocytes of <i>Eurygaster integriceps</i> (Hemiptera: Scutelleridae), Comp. Biochem. Physiol. B, 158, 1, 117, ; Zibaee A. (2012a), Digestive enzymes of large cabbage white butterfly, <i>Pieris brassicae</i> L. (Lepidoptera: Pieridae) from developmental and site of activity perspectives, Italian. J. Zool, 79, 1, 13, ; Zibaee A. (2012b), Proteolytic profile in the larval midgut of <i>Chilo suppressalis</i> Walker (Lepidoptera: Crambidae), Entomol. Res, 42, 1, 142,