Details

Title

Infrared Imaging Fourier Transform Spectrometer as the Stand-Off Gas Detection System

Journal title

Metrology and Measurement Systems

Yearbook

2011

Numer

No 4

Publication authors

Divisions of PAS

Nauki Techniczne

Publisher

Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation

Date

2011

Identifier

ISSN 0860-8229

References

Harig R. (2001), Toxic Cloud Imaging by Infrared Spectrometry: A Scanning FTIR System for Identification and Visualization, Field Analytical Chemistry and Technology, 5, 1-2, 75, doi.org/10.1002/fact.1008 ; Harig R. (2002), Scanning Infrared Remote Sensing System for Identification, Visualization, and Quantification of Airborne Pollutants, Proc. of SPIE, 4574, 83, doi.org/10.1117/12.455146 ; Griffin M. (2001), Characterization of Gaseous Effluents from Modeling of LWIR Hyperspectral Measurements, Proc. of SPIE, 4381, 360, doi.org/10.1117/12.437026 ; Burr T. (2006), Overview of Physical Models and Statistical Approaches for Weak Gaseous Plume Detection using Passive Infrared Hyperspectral Imagery, Sensors, 6, 12, 1721, doi.org/10.3390/s6121721 ; Lachance R. (1998), Gaseous emanation detection algorithm using a Fourier transform interferometer operating in differential mode, Proc. of SPIE, 3383, 124, doi.org/10.1117/12.317642 ; Thériault, J.-M. (2001). Passive standoff detection of chemical vapors by differential FTIR radiometry, <i>Technical Report Defence Research Establishment Valcartier (DREV) TR-2000-156.</i> ; Heasler P. (2007), Nonlinear Bayesian Algorithms for Gas Plume Detection and Estimation from Hyper-spectral Thermal Image Data, Sensors, 7, 905, doi.org/10.3390/s7060905 ; Spisz T. (2007), Field test results of standoff chemical detection using the FIRST, Proc. of SPIE, 6554, 655408, doi.org/10.1117/12.719677 ; Farley V. (2007), Chemical agent detection and identification with a hyperspectral imaging infrared sensor, Proc. of SPIE, 6661. ; Vallières A. (2005), Algorithms for chemical detection, identification and quantification for thermal hyperspectral imagers, Proc. of SPIE, 5995, doi.org/10.1117/12.632114 ; Chamberland M. (2004), Advancements in field-portable imaging radiometric spectrometer technology for chemical detection, Proc. of SPIE, 5416, 63, doi.org/10.1117/12.565033 ; Farley V. (2004), Development and testing of a hyper-spectral imaging instrument for field spectroscopy, Proc. of SPIE, 5546, 29, doi.org/10.1117/12.567741 ; Madura H. (2007), Automatic compensation of emissivity in three-wavelength pyrometers, Infrared Physics & Technology, 51, 1, 1, doi.org/10.1016/j.infrared.2006.11.001 ; Madura H. (2010), Pyrometric method of temperature measurement with compensation for solar radiation, Metrology and Measurement Systems, 17, 1, 77, doi.org/10.2478/v10178-010-0008-6 ; Bielecki Z. (1999), Infrared pyrometer for temperature measurement of objects of both wavelength- and time-dependent emissivity, Optica Applicata, 29, 3, 284. ; Madura H. (2004), Multispectral precise pyrometer for measurement of seawater surface temperature, Infrared Physics & Technology, 46, 1-2, 69, doi.org/10.1016/j.infrared.2004.03.010 ; Champion J.-P. (2009), The HITRAN 2008 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 533, doi.org/10.1016/j.jqsrt.2009.02.013 ; Sharpe S. (2004), Gas-Phase Databases for Quantitative Infrared Spectroscopy, Applied Spectroscopy, 58, 12, 1452, doi.org/10.1366/0003702042641281 ; Kastek M. (2009), Multispectral gas detection method, WIT Transactions on Ecology and the Environment, 123, 227, doi.org/10.2495/AIR090211 ; Włodarski M. (2009), Application of advanced optical methods for classification of air contaminants, WIT Transactions on Ecology and the Environment, 123, 237, doi.org/10.2495/AIR090221 ; Tremblay P. (2010), Standoff gas identification and quantification from turbulent stack plumes with an imaging Fourier-transform spectrometer, Proc. of SPIE, 7673, doi.org/10.1117/12.850127

DOI

10.2478/v10178-011-0058-4

×