Details

Title

Integration of Optoelectronic Components with LTCC (Low Temperature Co-Fired Ceramic) Microfluidic Structure

Journal title

Metrology and Measurement Systems

Yearbook

2011

Issue

No 4

Authors

Keywords

LTCC (low temperature co-fired ceramics) ; microfluidic ; absorbance ; CFD (computational fluid dynamics)

Divisions of PAS

Nauki Techniczne

Coverage

713-722

Publisher

Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10178-011-0067-3 ; ISSN 2080-9050, e-ISSN 2300-1941

Source

Metrology and Measurement Systems; 2011; No 4; 713-722

References

Gravesen P. (1993), Microfluidic - a review, J. Micromech. Microeng, 3, 168, doi.org/10.1088/0960-1317/3/4/002 ; Wautelet M. (2001), Scaling laws in the macro-, micro- and nanoworlds, European Journal of Physics, 22, 601, doi.org/10.1088/0143-0807/22/6/305 ; Manz A. (1990), Miniaturized total chemical analysis system: a novel concept for chemical sensing, Sens. Actuators B, 1, 244, doi.org/10.1016/0925-4005(90)80209-I ; Duffy D. (1998), Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem, 70, 4974, doi.org/10.1021/ac980656z ; Fujii T. (2002), PDMS-based microfluidic devices for biomedical applications, Microelectronic Engineering, 61-62, 907, doi.org/10.1016/S0167-9317(02)00494-X ; Merkel T. (1999), A new technology for fluidic Microsystems based on PCB technology, Sens. Actuators A, 77, 98. ; Läritz Ch. (2000), A microfluidic pH-regulation system based on printed circuit board technology, Sens. Actuators A, 84, 230. ; Gongora-Rubio M. (2001), Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST), Sens. Actuators A, 89, 222. ; Golonka L. (2005), LTCC based microfluidic system with optical detection, Sens. Actuators B, 111-112, 396, doi.org/10.1016/j.snb.2005.03.065 ; Ibáñez-Garcia N. (2008), Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems, Trends in Analytical Chemistry, 27, 24, doi.org/10.1016/j.trac.2007.11.002 ; Malecha K. (2008), Microchannel fabrication process in LTCC ceramics, Microelectronics Reliability, 48, 866, doi.org/10.1016/j.microrel.2008.03.013 ; Malecha K. (2009), Three-dimensional structuration of zero-shrinkage LTCC ceramics for microfluidic applications, Microelectronics Reliability, 49, 585, doi.org/10.1016/j.microrel.2009.02.020 ; Andrijasevic D. (2007), Aspects of micro structuring low temperature co-fired ceramic (LTCC) for realization complex 3D objects by embossing, Microelectronic Engineering, 84, 1198, doi.org/10.1016/j.mee.2007.01.152 ; Rabe T. (2007), Hot embossing: an alternative method to produce cavities in ceramic multilayer, Int. J. App. Ceram. Technol, 4, 38, doi.org/10.1111/j.1744-7402.2007.02117.x ; Kita J. (2002), Laser treatment of LTCC for 3D structures and elements fabrication, Microelectronics International, 19, 14, doi.org/10.1108/13565360210444998 ; Nowak D. (2009), Fabrication and electrical properties of laser-shaped thick-film and LTCC microresistors, Microelectronics Reliability, 49, 600, doi.org/10.1016/j.microrel.2009.02.019 ; Markowski P. (2011), Thick-film photoimageable and laser-shaped arms for thermoelectric microgenerators, Microelectronics International, 28, 43, doi.org/10.1108/13565361111162620 ; Barlow F. (2009), Fabrication of precise fluidic structures in LTCC, Int. J. App. Ceram. Technol, 6, 18, doi.org/10.1111/j.1744-7402.2008.02315.x ; Bembnowicz P. (2010), Preliminary studies on LTCC based PCR microreactor, Sens. Actuators B, 150, 715, doi.org/10.1016/j.snb.2010.08.015 ; Thelemann T. (2007), LTCC-based fluidic components for chemical applications, Journal of Microelectronics and Electronic Packaging, 4, 167. ; Bargiel S. (2004), Nanoliter detectors for flow systems, Sens. Actuators A, 115, 245. ; Grabowska I. (2007), Microfluidic system with electrochemical and optical detection, Microelectronic Engineering, 84, 1741, doi.org/10.1016/j.mee.2007.01.248
×