Mathematical modelling of heat transfer in liquid flat-plate solar collector tubes

Journal title

Archives of Thermodynamics




No 2 July

Publication authors

Divisions of PAS

Nauki Techniczne


The Committee on Thermodynamics and Combustion of the Polish Academy of Sciences




ISSN 1231-0956 ; eISSN 2083-6023


Goswami D. (2004), New and emerging developments in solar energy, Solar Energy, 76, 33. ; Fan J. (2007), Flow distribution in a solar collector panel with horizontally inclined absorber strips, Solar Energy, 81, 1501. ; Burch J. (2004), Simulation of an unglazed collector system for domestic hot water and space heating and cooling, Solar Energy, 77, 399. ; Zueva G. (2001), Mathematical model of heat transfer in a solar collector and its experimental validation, Theoretical Foundations of Chemical Engineering, 35, 6, 604. ; Razavi J. (2003), Rate of heat transfer in polypropylene tubes in solar water heaters, Solar Energy, 74, 441. ; Morrison G. (2004), Water-in-glass evacuated tube solar collectors, Solar Energy, 76, 135. ; Augustus M. (2007), Mathematical modeling and thermal performance analysis of unglazed transpired solar collectors, Solar Energy, 81, 62. ; Duffie J. (1991), Solar Engineering of Thermal Processes. ; Weitbrecht V. (2002), Flow distribution in solar collectors with laminar flow conditions, Solar Energy, 73, 433. ; Wang X. (1990), Analysis and performance of flat-plate solar collector arrays, Solar Energy, 45, 2, 71. ; Karatasou S. (2006), On the calculation of solar utilizability for south oriented flat plate collectors tilted to an angle equal to the local latitude, Solar Energy, 80, 1600. ; Pluta Z. (2000), Fundamentals of Solar Energy Thermal Conversion. ; Gerald C. (1994), Applied numerical analysis. ; Serov E. (1981), Dynamics of steam generators.