Szczegóły

Tytuł artykułu

Membrane separation of carbon dioxide in the integrated gasification combined cycle systems

Tytuł czasopisma

Archives of Thermodynamics

Rocznik

2010

Numer

No 3 September

Autorzy publikacji

Wydział PAN

Nauki Techniczne

Wydawca

The Committee on Thermodynamics and Combustion of the Polish Academy of Sciences

Data

2010

Identyfikator

ISSN 1231-0956 ; eISSN 2083-6023

Referencje

Grainger D. (2008), Techno-economic evaluation of a PVAm CO<sub>2</sub>-selective membrane in an IGCC power plant with CO<sub>2</sub> capture, Fuel, 87, 14. ; Pesiri D. (2003), Thermal optimization of polybenzimidazole meniscus membranes for the separation of hydrogen, methane, a carbon dioxide, Journal of Membrane Science, 218, 11. ; Skorek-Osikowska A. (2009), Purification technologies in the integrated gasification combined cycle (IGCC) installations — review and outlook, 67. ; Ściążko M. (2009), The pronciples of operation and constructions of generators for coal gasification for IGCC systems, null. ; Marano J. (2008), Integration of gas separation membranes with IGCC identifying the right membrane for the right Job, Energy Procedia, 1, 361. ; Thambimuthu K. (1993), Gas cleaning for advanced coal-based power generation. ; IPCC: <i>IPCC Special Report on Carbon Dioxide Capture and Storage.</i> Prepared by Working Group III of the Intergovernmental Panel on Climate Change, B Metz, et al. (eds.). Cambridge University Press, Cambridge - New York 2005, 442. ; Maurstad O. (2005), An overview of coal based Integrated Gasification Combined Cycle (IGCC) Technology. ; Ratafia-Brown J. (2002), Major Environmental aspects of gasification-based power generation technologies. ; Kanniche M. (2009), Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO<sub>2</sub> capture, Applied Thermal Engineering. ; Kaldis S. (2004), Energy and capital cost analysis of CO<sub>2</sub> capture in coal IGCC processes via gas separation membranes, Fuel Processing Technology, 85, 337. ; Bodzek M. (1997), Membranes Technologies in Enviromental Protection. ; <i>Gasification World Database2007 — Current Industry Status. Robust Growth Forecast.</i> Department of Energy USA, National Energy Technology Laboratory, October. 2007. <a target="_blank" href='http://www.netl.doe.gov'>www.netl.doe.gov</a> ; Kotowicz J. (2007), The Basis of the membrane gases separation, Rynek Energii, 73, 6, 29. ; Krishnan G. (2009), Simulation of a process to capture CO<sub>2</sub> from IGCC syngas using a high temperature PBI membrane, Energy Procedia, 1, 4080. ; Rezvani S. (2009), Comparative assessment of coal fired IGCC systems with CO<sub>2</sub> capture using physical absorption, membrane reactors and chemical looping, Fuel, 88, 2463. ; <i>Carbon Capture and Storage: Meeting the Financing Challenge.</i> Presentation to: Workshop on Carbon Capture and Storage Financing Challenges and Opportunities. London, September 2008. ; Lee D. (2004), Synthesis, characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina, Journal of Membrane Science, 231, 117. ; Bednarska A.: <i>European plans for improvement of the energy efficiency.</i> Web sides of URE: <a target="_blank" href='http://www.ure.gov.pl'>www.ure.gov.pl</a> ; <i>Directive of the European Parliament and the Council 2009/29/WE of 23 April 2009 amending directive 2003/87/WE in order to improve and extend the European system of greenhouse gas emission allowances trade.</i> Official Journal of the European Union, L 140/63. ; Davidson J. (2004), Technologies for capture of carbon dioxide, null. ; Kotowicz J. (2010), The influence of membrane CO<sub>2</sub> separation on the efficiency of a coal-fired power plant, Energy, 35, 841.

DOI

10.2478/v10173-010-0020-y

×