Details

Title

Experiments performed with bubbly flow in vertical pipes at different flow conditions covering the transition region: simulation by coupling Eulerian, Lagrangian and 3D random walks models

Journal title

Archives of Thermodynamics

Yearbook

2012

Numer

No 1 August

Publication authors

Divisions of PAS

Nauki Techniczne

Publisher

The Committee on Thermodynamics and Combustion of the Polish Academy of Sciences

Date

2012

Identifier

eISSN 2083-6023 ; ISSN 1231-0956

References

(1993), Two Phase Flow: Theory and Applications. ; Zaruba A. (2007), Bubble-wall interaction in a vertical gas-liquid flow: Bouncing, sliding and bubble deformations, Chem. Eng. Sci, 62, 1591, doi.org/10.1016/j.ces.2006.11.044 ; Zun I. (1993), Space-time evolution of the non-homogeneous bubble distribution in upward flow, Int. J. Multiphase Flow, 19, 1, 151, doi.org/10.1016/0301-9322(93)90030-X ; Prasser H. (2002), Evolution of the two phase flow in a vertical tube, decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors, Int. J. Thermal Sci, 41, 17, doi.org/10.1016/S1290-0729(01)01300-X ; Tomiyama A. (1997), A three-dimensional particle tracking method for bubbly flow simulation, Nucl. Eng. Des, 175, 77, doi.org/10.1016/S0029-5493(97)00164-7 ; Lucas D. (2005), Development of co-current air-water flow in a vertical pipe, Int. J. Multiphase Flow, 31, 1304, doi.org/10.1016/j.ijmultiphaseflow.2005.07.004 ; Krepper E. (2005), On the modelling of bubbly flow in vertical pipes, Nucl. Eng. Des, 235, 597, doi.org/10.1016/j.nucengdes.2004.09.006 ; Bocksell T. (2006), Stochastic modelling of particle diffusion in a turbulent boundary layer, Int. J. Multiphase Flow, 32, 1234, doi.org/10.1016/j.ijmultiphaseflow.2006.05.013 ; Dehbi A. (2008), Turbulent particle dispersion in arbitrary wall-bounded geometries: A coupled CFD-Langevin-equation based approach, Int. J. Multiphase Flow, 34, 819, doi.org/10.1016/j.ijmultiphaseflow.2008.03.001 ; Haworth D. (1986), Generalized Langevin model for turbulent flows, Physics Fluids, 29, 2, 387, doi.org/10.1063/1.865723 ; Muñoz-Cobo J. (2012), Coupled Lagrangian and Eulerian simulation of bubbly flows in vertical pipes, validation with experimental data using multisensory conductivity probes and laser Doppler anemometry, Nucl. Eng. Des, 242, 285, doi.org/10.1016/j.nucengdes.2011.10.021 ; Tomiyama A. (1998), Struggle with computational Dynamics, null. ; Auton T. (1987), The Lift Force on a Spherical Body in a Rotational Flow, J. Fluid Mech, 183, 199, doi.org/10.1017/S002211208700260X ; Tomiyama A. (2002), Transverse migration of single bubbles in simple shear flows, Chem. Eng. Sci, 57, 1849, doi.org/10.1016/S0009-2509(02)00085-4 ; Antal S. (1991), Analysis of two phase flow distribution in fully developped daminar bubbly two-phase flow, Int. J. Multiphase Flow, 17, 635, doi.org/10.1016/0301-9322(91)90029-3 ; Pope S. (2002), Stochastic Lagrangian models of velocitiy in homogeneous turbulent shear flow, Phys. Fluids, 14, 5, 1696, doi.org/10.1063/1.1465421 ; Haworth D. (1986), A generalized Langevin model for turbulent flow, Phys. Fluids, 29, 2, 387. ; Veenman, M. P. B.: <i>Statistical Analysis of Turbulent Flow"</i>. PhD thesis, University of Eindhoven, Eindhoven 2004. ; Dehbi A. (2008), Turbulent particle dispersion in arbitrary wall-bounded geometries: a coupled CFD-Langevin-equation based approach, Int. J. Multiphase Flow, 34, 819. ; Oesterlé B. (2004), On Lagrangian time scales and particle dispersion modeling in equilibrium shear flows, Phys. Fluids, 16, 9, 3374, doi.org/10.1063/1.1773844 ; Kallio G. (1989), A numerical simulation of particle deposition in turbulent boundary layers, Int. J. Multiphase Flow, 3, 433, doi.org/10.1016/0301-9322(89)90012-8 ; Pozorski J. (1998), On the Lagrangian turbulent dispersion models based on the Langevin equation, Int. J. Multiphase Flow, 24, 913, doi.org/10.1016/S0301-9322(98)00016-0 ; (1995), Numerical Solution of Stochastic Differential Equations. ; (1994), Numerical Solution of Stochastic Differential Equations Through Computer Experiments. ; Muñoz-Cobo J. (2011), Validation of reactor noise linear stability methods by means of advanced stochastic differential equations models, Ann. Nucl. Energy, 38, 1473, doi.org/10.1016/j.anucene.2011.03.018 ; Launder B. (1972), Mathematical Models of Turbulence. ; Dhotre M. (2007), CFD simulation of bubbly flows: Random dispersion model, Chem. Eng. Sci, 62, 7140, doi.org/10.1016/j.ces.2007.08.016 ; Kim S. (2001), Study on interfacial structures in slug flows using a miniaturized four-sensor conductivity probe, Nucl. Eng. Des, 204, 45, doi.org/10.1016/S0029-5493(00)00312-5 ; Mendez-Diaz S.: <i>Experimental Measurement of the Interfacial Area Concentration.</i> PhD thesis, Universidad Politécnica de Valencia, Valencia 2008 (in Spain). ; Shen X. (2005), Methodological improvement of an intrusive four-sensor probe for the multi-dimensional two-phase flow measurement, Int. J. Multiphase Flow, 31, 593, doi.org/10.1016/j.ijmultiphaseflow.2005.02.003 ; Delhaye J. (1994), Interfacial area in bubbly flow: experimental data and correlations, J. Nucl. Eng. Des, 151, 65, doi.org/10.1016/0029-5493(94)90034-5 ; Ishii M. (1975), Thermo-Fluid Dynamic Theory of Two-Phase Fflow. ; Hibiki T. (2001), Axial interfacial area transport of vertical bubbly flows, Int. J. Heat Mass Transfer, 44, 1869, doi.org/10.1016/S0017-9310(00)00232-5 ; Ferziger J. (2002), Computational methods for fluid dynamics, doi.org/10.1007/978-3-642-56026-2

DOI

10.2478/v10173-012-0001-4

×