Szczegóły

Tytuł artykułu

CFD simulation of DEBORA boiling experiments

Tytuł czasopisma

Archives of Thermodynamics

Rocznik

2012

Numer

No 1 August

Autorzy publikacji

Wydział PAN

Nauki Techniczne

Wydawca

The Committee on Thermodynamics and Combustion of the Polish Academy of Sciences

Data

2012

Identyfikator

ISSN 1231-0956 ; eISSN 2083-6023

Referencje

Ishii M. (1975), Thermo-fluid Dynamic Theory of Two-phase Flow. ; Kurul N. (1990), Multidimensional effects in forced convection subcooled boiling, null, 2. ; Kurul N. (1991), On the modeling of multidimensional effects in boiling channels, null, 30. ; Krepper E. (2007), Modelling of subcooled boiling - concept, validation and application to fuel assembly design, Nucl. Eng. Des, 237, 716, doi.org/10.1016/j.nucengdes.2006.10.023 ; Bartolomej G. (1967), Experimental study of true void fraction when boiling subcooled water in vertical tubes, Thermal Eng, 14, 123. ; Krepper E. (2011), CFD for subcooled flow boiling: Simulation of DEBORA experiments, Nucl. Eng. Des, 241, 3851, doi.org/10.1016/j.nucengdes.2011.07.003 ; Garnier J. (2001), Local measurements on flow boiling of refrigerant 12 in a vertical tube, Multiphase Sci. and Technol, 13, 1, doi.org/10.1615/MultScienTechn.v13.i1-2.10 ; Yao W. (2002), Prediction of parameters distribution of upward boiling two-phase flow with two-fluid models, null. ; Yao W. (2004), Volumetric interfacial area prediction in upward bubbly two-phase flow, Int. J. Heat Mass Transfer, 47, 307, doi.org/10.1016/j.ijheatmasstransfer.2003.06.004 ; Boucker M. <i>et al.: Towards the prediction Of local thermal-hydraulics in real PWR core conditions using Neptune_CFD_software.</i> Workshop on Modeling and Measurements of Two-Phase Flows and Heat Transfer in Nuclear Fuel Assemblies, KTH Stockholm, Sweden, 2006. ; Morel C. (2009), Modeling of multisize bubbly flow and application to the simulation of boiling flows with the NEPTUNE CFD code, Science and Technology of Nuclear Installations, 953527. ; Kader B. (1981), Temperature and concentration profiles in fully turbulent boundary layers, Int. J. Heat Mass Transfer, 24, 1541, doi.org/10.1016/0017-9310(81)90220-9 ; Wintterle T.: <i>Development of a Numerical Boundary Condition for the Simulation of Nucleate Boiling at Heated Walls.</i> PhD. thesis, University of Stuttgart, 2004. ; Mikic B. (1969), A new correlation of pool-boiling data including the fact of heating surface characteristics, Trans. ASME J. Heat Transfer, 91, 245, doi.org/10.1115/1.3580136 ; Ranz W. (1952), Evaporation from drops, Chem. Eng. Prog, 48, 141. ; Anglart H. (1997), CFD prediction of flow and phase distribution in fuel assemblies with spacers, Nucl. Eng. Des, 177, 215, doi.org/10.1016/S0029-5493(97)00195-7 ; Ishii M. (1979), Drag coefficient and relative velocity in bubbly, droplet or particulate flows, AIChE J, 25, 843, doi.org/10.1002/aic.690250513 ; Tomiyama A. (2002), Transverse migration of single bubbles in simple shear flows, Chem. Eng. Sci, 57, 1849, doi.org/10.1016/S0009-2509(02)00085-4 ; Burns A. (2004), The Favre averaged drag model for turbulence dispersion in Eulerian multi-phase flows, null. ; Menter F. (1994), Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J, 32, 1598, doi.org/10.2514/3.12149 ; Sato Y. (1981), Momentum and heat transfer in two-phase bubble flow-I, Int. J. Multiphase Flow, 7, 167, doi.org/10.1016/0301-9322(81)90003-3 ; Tolubinsky V. (1970), Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling. Heat Transfer 1970, null, 5. ; Kolev N. (2006), Uniqueness of the elementary physics driving heterogeneous nucleate boiling and flashing, Nucl. Eng. Technol, 38, 175. ; Krepper E. (2008), The inhomogeneous MUSIG model for the simulation of poly-dispersed flows, Nucl. Eng. Des, 238, 1690, doi.org/10.1016/j.nucengdes.2008.01.004 ; Lucas D. (2009), Condensation of steam bubbles injected into subcooled water, null. ; Prince M. (1990), Bubble coalescence and break-up in air-sparged bubble columns, AIChE J, 36, 1485, doi.org/10.1002/aic.690361004 ; Luo H. (1996), Theoretical model for drop and bubble breakup in turbulent dispersions, AIChE J, 42, 1225, doi.org/10.1002/aic.690420505 ; Ramstorfer F. (2005), Modelling of the near-wall liquid velocity field in subcooled boiling flow, null. ; Koncar B. (2008), CFD simulation of convective flow boiling of refrigerant in a vertical annulus, Nucl. Eng. Des, 238, 693, doi.org/10.1016/j.nucengdes.2007.02.035 ; Klausner J. (1993), Vapor bubble departure in forced convection boiling, Int. J. Heat Mass Transfer, 36, 651, doi.org/10.1016/0017-9310(93)80041-R ; <i>ANSYS CFX-Solver Theory Guide, Release 12.1.</i> ANSYS Inc., 2009.

DOI

10.2478/v10173-012-0005-0

×