Szczegóły

Tytuł artykułu

Conversion between Cartesian and geodetic coordinates on a rotational ellipsoid by solving a system of nonlinear equations

Tytuł czasopisma

Geodesy and Cartography

Rocznik

2011

Wolumin

vol. 60

Numer

No 2

Autorzy

Słowa kluczowe

Cartesian and geodetic coordinates ; rotational ellipsoid ; Newton’s method ; coordinate transformation

Wydział PAN

Nauki Techniczne

Wydawca

Commitee on Geodesy PAS

Data

2011

Typ

Artykuły / Articles

Identyfikator

ISSN 2080-6736

Referencje

Borkowski K. (1987), Transformation of Geocentric to Geodetic Coordinates without Approximations, Astrophys. Space Sci, 139, 1, doi.org/10.1007/BF00643807 ; Borkowski K. (1989), Accurate Algorithms to Transform Geocentric to Geodetic Coordinates, Bulletin Géodésique, 63, 50, doi.org/10.1007/BF02520228 ; Bowring B. (1976), Transformation from spatial to geographical coordinates, Survey Review, 23, 323, doi.org/10.1179/003962676791280626 ; Darvishi M. (2007), A third-order Newton-type method to solve systems of nonlinear equations, Applied Mathematics and Computation, 187, 2, 630, doi.org/10.1016/j.amc.2006.08.080 ; Featherstone W. (2008), Closed-form transformation between geodetic and ellipsoidal coordinates, Studia geophysica et geodaetica, 52, 1, doi.org/10.1007/s11200-008-0002-6 ; Feltens J. (2009), Vector methods to compute azimuth, elevation, ellipsoidal normal and the Cartesian (X, Y, Z) to geodetic (φ, λ, h) transformation, Journal of Geodesy, 82, 493, doi.org/10.1007/s00190-007-0198-1 ; Fukushima T. (1999), Fast transform from geocentric to geodetic coordinates, Journal of Geodesy, 73, 603, doi.org/10.1007/s001900050271 ; Fukushima T. (2006), Transformation from Cartesian to geodetic coordinates accelerated by Halley's method, Journal of Geodesy, 79, 689, doi.org/10.1007/s00190-006-0023-2 ; Hedgley D. (1976), An exact transformation from geocentric to geodetic coordinates for nonzero altitudes. ; Heiskanen W. (1967), Physical Geodesy. ; Ligas M. (2011), Cartesian to geodetic coordinates conversion on a triaxial ellipsoid, Journal of Geodesy, doi.org/10.1007/s00190-011-0514-7 ; Lin K. (1995), Transformation from geocentric to geodetic coordinates using Newton's iteration, Bulletin Géodésique, 69, 300, doi.org/10.1007/BF00806742 ; Moritz H. (1980), Geodetic Reference System 1980, Bulletin Géodésique, 54, 395, doi.org/10.1007/BF02521480 ; Shu Ch. (2010), An iterative algorithm to compute geodetic coordinates, Computers & Geosciences, 36, 1145, doi.org/10.1016/j.cageo.2010.02.004 ; Vanicek P. (1982), Geodesy: The concepts. ; Vermeille H. (2002), Direct transformation from geocentric to geodetic coordinates, Journal of Geodesy, 76, 451, doi.org/10.1007/s00190-002-0273-6 ; Vermeille H. (2004), Computing geodetic coordinates from geocentric coordinates, Journal of Geodesy, 78, 94. ; Zanevicius D. (2010), Technologies for calculating geodetic coordinates applying h-geometry functions, 36, 160. ; Zhang C. (2005), An alternative algebraic algorithm to transform Cartesian to geodetic coordinates, Journal of Geodesy, 79, 413, doi.org/10.1007/s00190-005-0487-5

DOI

10.2478/v10277-012-0013-x

×