Details

Title

The presence of CD25 on bovine WC1+ γδ T cells is positively correlated with their production of IL-10 and TGF-β, but not IFN-γ

Journal title

Polish Journal of Veterinary Sciences

Yearbook

2012

Numer

No 1

Publication authors

Divisions of PAS

Nauki Biologiczne i Rolnicze

Publisher

Polish Academy of Sciences Committee of Veterinary Sciences ; University of Warmia and Mazury in Olsztyn

Date

2012

Identifier

ISSN 1505-1773

References

Amadori M. (1995), Role of a distinct population of bovine γδ T cells in the immune response to viral agents, Viral Immunol, 8, 81, doi.org/10.1089/vim.1995.8.81 ; Brown W. (1994), Functional and phenotypic characterization of WC1<sup>+</sup> γδ T-cells isolated from Babesia bovis-stimulated T cell lines, Cell Immunol, 153, 9, doi.org/10.1006/cimm.1994.1002 ; Bucy R. (1989), Tissue localization and CD8 accessory molecule expression of T γδ cells in humans, J Immunol, 142, 3045. ; Collins R. (1996), Bovine γδ TcR<sup>+</sup> T lymphocytes are stimulated to proliferate by autologous Theileria annulata-infected cells in the presence of interleukin-2, Scand J Immunol, 44, 444, doi.org/10.1046/j.1365-3083.1996.d01-332.x ; Collins R. (1998), γδ T cells present antigen to CD4<sup>+</sup> αβ T cells, J Leukoc Biol, 63, 707. ; Fikri Y. (2001), Purified bovine WC1<sup>+</sup> γδ T lymphocytes are activated by staphylococcal enterotoxins and toxic shock syndrome toxin-1 superantigens: proliferation response, TCR Vγ profile and cytokines expression, Immunol Lett, 77, 87, doi.org/10.1016/S0165-2478(01)00182-1 ; Hanby-Flarida M. (1996), Modulation of WC1, a lineage-specific cell surface molecule of γδ T cells augments cellular proliferation, Immunology, 88, 116, doi.org/10.1046/j.1365-2567.1996.d01-649.x ; Hedges J. (2003), Differential mRNA expression in circulating γδ T lymphocyte subsets defines unique tissue-specific functions, J Leukoc Biol, 73, 306, doi.org/10.1189/jlb.0902453 ; Hoek A. (2009), Subpopulations of bovine WC1<sup>+</sup> γδ T cells rather than CD4<sup>+</sup>CD25<sup>high</sup>Foxp3<sup>+</sup> T cells act as immune regulatory cells ex vivo, Vet Res, 40, 06, doi.org/10.1051/vetres:2008044 ; Itohara S. (1989), Monoclonal antibodies specific to native murine T-cell receptor γδ: analysis of γδ T cells during thymic ontogeny and in peripheral lymphoid organs, Proc Natl Acad Sci USA, 86, 5094, doi.org/10.1073/pnas.86.13.5094 ; Kemp K. (1999), Leishmania specific T cells expressing interferon-gamma (IFN-γ) and IL-10 upon activation are expanded in individuals cured of visceral leishmaniasis, Clin Exp Immunol, 116, 500, doi.org/10.1046/j.1365-2249.1999.00918.x ; Lahmers K. (2005), The CD4<sup>+</sup> T cell immunodominant Anaplasma marginale major surface protein 2 stimulates γδ T cell clones that express unique T cell receptors, J Leukoc Biol, 77, 199, doi.org/10.1189/jlb.0804482 ; Meissner N. (2003), Serial analysis of gene expression in circulating γδ T cell subsets defines distinct immunoregulatory phenotypes and unexpected gene expression profiles, J Immunol, 170, 356, doi.org/10.4049/jimmunol.170.1.356 ; Maślanka T. (2010), CD4<sup>+</sup> regulatory cells, Med Weter, 66, 827. ; Maślanka T. (2011), CD8<sup>+</sup> regulatory cells, Med Weter, 67, 91. ; Maślanka T. (2011), In vitro effects of dexamethasone on bovine CD25<sup>+</sup>CD4<sup>+</sup> and CD25<sup>-</sup>CD4<sup>+</sup> cells, Res Vet Sci, doi.org/10.1016/j.rvsc.2012.01.018 ; McNally A. (2011), CD4<sup>+</sup>CD25<sup>+</sup> regulatory T cells control CD8<sup>+</sup> T-cell effector differentiation by modulating IL-2 homeostasis, Proc Natl Acad Sci USA, 108, 7529, doi.org/10.1073/pnas.1103782108 ; Pandiyan P. (2007), CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup> regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4<sup>+</sup> T cells, Nat Immunol, 8, 1353, doi.org/10.1038/ni1536 ; Pollock J. (2002), The WC1<sup>+</sup> γδ T-cell population in cattle: a possible role in resistance to intracellular infection, Vet Immunol Immunopathol, 89, 105, doi.org/10.1016/S0165-2427(02)00200-3 ; Price S. (2007), Workshop cluster 1<sup>+</sup> γδ T-cell receptor+ T cells from calves express high levels of interferon-γ in response to stimulation with interleukin-12 and -18, Immunology, 120, 57. ; Rogers A. (2005a), γδ T cell function varies with the expressed WC1 coreceptor, J Immunol, 174, 3386, doi.org/10.4049/jimmunol.174.6.3386 ; Rogers A. (2005b), Function of ruminant γδ T cells is defined by WC1.1 or WC1.2 isoform expression, Vet Immunol Immunopathol, 108, 211, doi.org/10.1016/j.vetimm.2005.08.008 ; Roncarolo M. (2001), Type 1 T regulatory cells, Immunol Rev, 182, 68, doi.org/10.1034/j.1600-065X.2001.1820105.x ; Sandbulte M. (2002), T-cell populations responsive to bovine respiratory syncytial virus in seronegative calves, Vet Immunol Immunopathol, 84, 111, doi.org/10.1016/S0165-2427(01)00393-2 ; Sawitzki B. (2005), IFN-γ production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo, J Exp Med, 201, 1925, doi.org/10.1084/jem.20050419 ; Smyth A. (2001), In vitro responsiveness of γδ T cells from Mycobacterium bovis-infected cattle to mycobacterial antigens: predominant involvement of WC1<sup>+</sup> cells, Infect Immun, 69, 89, doi.org/10.1128/IAI.69.1.89-96.2001 ; Takamatsu H. (1997), A γδ T cell specific surface receptor (WC1) signaling G0/G1 cell cycle arrest, Eur J Immunol, 27, 105, doi.org/10.1002/eji.1830270116 ; Tang Q. (2008), The Foxp3<sup>+</sup> regulatory T cell: a jack of all trades, master of regulation, Nat Immunol, 9, 239, doi.org/10.1038/ni1572 ; Toka F. (2011), Rapid and transient activation of γδ T cells to IFN-γ production, NK cell-like killing, and antigen processing during acute virus infection, J Immunol, 186, 4853, doi.org/10.4049/jimmunol.1003599 ; Welsh M. (2002), Responses of bovine WC1<sup>+</sup> γδ T cells to protein and nonprotein antigens of Mycobacterium bovis, Infect Immun, 70, 6114, doi.org/10.1128/IAI.70.11.6114-6120.2002 ; White A. (2002), Expression of the bovine high affinity IL-12 receptor β2, Vet Immunol Immunopathol, 84, 127, doi.org/10.1016/S0165-2427(01)00403-2 ; Wilson R. (1996), T-cell subsets in blood and lymphoid tissues obtained from fetal calves, maturing calves, and adult bovine, Vet Immunol Immunopathol, 53, 49, doi.org/10.1016/0165-2427(95)05543-6 ; Workman C. (2009), The development and function of regulatory T cells, Cell Mol Life Sci, 66, 2603, doi.org/10.1007/s00018-009-0026-2 ; Wyatt C. (1994), Differential distribution of γδ T-cell receptor lymphocyte subpopulations in blood and spleen of young and adult cattle, Vet Immunol Immunopathol, 40, 187, doi.org/10.1016/0165-2427(94)90019-1

DOI

10.2478/v10181-011-0108-6

×