Details

Title

Dual Phase Lag Model of Melting Process in Domain of Metal Film Subjected to an External Heat Flux

Journal title

Archives of Foundry Engineering

Yearbook

2016

Numer

No 4

Publication authors

Divisions of PAS

Nauki Techniczne

Description

Archives of Foundry Engineering continues the publishing activity started by Foundry Commission of the Polish Academy of Sciences (PAN) in Katowice in 1978. The initiator of it was the first Chairman Professor Dr Eng. Wacław Sakwa – Corresponding Member of PAN, Honorary Doctor of Czestochowa University of Technology and Silesian University of Technology. This periodical first name was „Solidification of Metals and Alloys” , and made possible to publish the results of works achieved in the field of the Basic Problems Research Cooperation. The subject of publications was related to the title of the periodical and concerned widely understand problems of metals and alloys crystallization in a casting mold. In 1978-2000 the 44 issues have been published. Since 2001 the Foundry Commission has had patronage of the annually published “Archives of Foundry” and since 2007 quarterly published “Archives of Foundry Engineering”. Thematic scope includes scientific issues of foundry industry:

  • Theoretical Aspects of Casting Processes,
  • Innovative Foundry Technologies and Materials,
  • Foundry Processes Computer Aiding,
  • Mechanization, Automation and Robotics in Foundry,
  • Transport Systems in Foundry,
  • Castings Quality Management,
  • Environmental Protection.

Publisher

The Katowice Branch of the Polish Academy of Sciences

Date

2016

Identifier

ISSN 2299-2944

References

Tang (1999), Wavy wavelike diffusive thermal responses of finite rigid slabs to high - speed heating of laser pulses of Heat and Mass Transfer, International Journal, 42, 855. ; Mochnacki (2007), Application of Thiessen polygons in control volume model of solidification of Achievements of Materials and Manufacturing, Journal Engineering, 23, 75. ; Mochnacki (2010), Numerical modeling of casting solidification using generalized finite difference method, Materials Science Forum, 638. ; Ivanova (2012), Calculation of phase change boundary position in continuous casting of Foundry, Archives Engineering, 13, 57. ; Szopa (2015), Numerical modeling of pure metal solidification using the one domain approach of Applied Mathematics and Computational, Journal Mechanics, 14, 28. ; Majchrzak (2016), Modeling of melting and resolidification in domain of metal film subjected to a laser pulse of Foundry, Archives Engineering, 16, 41. ; Majchrzak (2012), Numerical modeling of melting process of thin metal film subjected to the short laser pulse of Foundry, Archives Engineering, 12, 105. ; Mochnacki (2011), Computational simulations and applications Numerical modeling of solidification process Chapter, INTECH, 24, 513. ; Chen (2004), Nanoscale heat Transfer , Encyclopedia of NanoScience, Nanotechnology, 7, 429. ; Bondarenko (2015), The mathematical model of hydrodynamics and heat and mass transfer at formation of steel ingots and castings of Foundry, Archives Engineering, 15, 13. ; Mochnacki (2015), Micro - scale heat transfer Algorithm basing on the Control Volume Method and the identification of relaxation and thermalization times using the search method Computer Methods in Materials, Science, 15, 353. ; Mochnacki (2012), Definition of alloy substitute thermal capacity using the simple macrosegregation models of Foundry, Archives Engineering, 19, 113. ; Kumar (2010), Mathematical modeling of freezing and thawing process in tissues : a porous media approach, Int J Appl Mechanics, 2, 617, doi.org/10.1142/S1758825110000688

DOI

10.1515/afe-2016-0089

×