Details
Title
Using the lid-driven cavity flow to validate moment-based boundary conditions for the lattice Boltzmann equationJournal title
Archive of Mechanical EngineeringYearbook
2017Volume
vol. 64Issue
No 1Affiliation
Mohammed, Seemaa : School of Computing Electronics and Mathematics, Plymouth University, UK ; Reis, Tim : Department of Mathematical Sciences, University of Greenwich, UKAuthors
Keywords
lattice Boltzmann equation ; moment-based boundary conditions ; multiple relaxation timesDivisions of PAS
Nauki TechniczneCoverage
57-74Publisher
Polish Academy of Sciences, Committee on Machine BuildingBibliography
[1] F. Higuera and J. Jimenez. Boltzmann approach to lattice gas simulations. Europhys. Lett., 9:663, 1989.[2] YH. Qian, D. d’Humières, and P. Lallemand. Lattice BGK models for Navier-Stokes equation. Europhys. Lett., 17:479, 1992.
[3] X. Shan, X.F. Yuan, and H. Chen. Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech., 550:413–441, 2006.
[4] X. He and L.S. Luo. A priori derivation of the lattice Boltzmann equation. Phys. Rev. E, 55:R6333, 1997.
[5] D. d’Humieress. Generalized lattice-Boltzmann equations. Prog. Astronaut. Aeronaut., pages 450–458, 1992.
[6] P. Lallemand and L.S. Luo. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E, 61:6546, 2000.
[7] P.J. Dellar. Incompressible limits of lattice Boltzmann equations using multiple relaxation times. J. Comput. Phys., 190:351–370, 2003.
[8] A. JC. Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. theoretical foundation. J. Fluid Mech., 271:285–309, 1994.
[9] Z. Guo and C. Shu. Lattice Boltzmann method and its applications in engineering. World Scientific, 2013.
[10] X.Y. He, Q.S. Zou, L.S. Luo, and M. Dembo. Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys., 87:115–136, 1997.
[11] I. Ginzbourg and P.M. Adler. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II. France, 4:191–214, 1994.
[12] J.E. Broadwell. Study of rarefied shear flow by the discrete velocity method. J. Fluid Mech., 19:401–414, 1964.
[13] R. Gatignol. Kinetic theory boundary conditions for discrete velocity gases. Phys. Fluids (1958-1988), 20:2022–2030, 1977.
[14] S. Ansumali and I. V Karlin. Kinetic boundary conditions in the lattice Boltzmann method. Phys. Rev. E, 66:026311, 2002.
[15] Q. Zou and X. He. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids., 9:1591–1598, 1997.
[16] S. Bennett. A lattice Boltzmann model for diffusion of binary gas mixtures. PhD thesis, University of Cambridge, 2010.
[17] D.R. Noble, S. Chen, G. Georgiadis, and R.O. Buckius. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Phys. Fluids, 7(1):203–209, 1995.
[18] S. Bennett, P. Asinari, and P.J. Dellar. A lattice Boltzmann model for diffusion of binary gas mixtures that includes diffusion slip. I nt. J. Numer. Meth. Fluids, 69:171–189, 2012.
[19] R. Allen and T. Reis. Moment-based boundary conditions for lattice Boltzmann simulations of natural convection in cavities. Prog. Comp. Fluid Dyn.: An Int. J., 16:216–231, 2016.
[20] T. Reis and P.J. Dellar. Moment-based formulation of Navier–Maxwell slip boundary conditions for lattice Boltzmann simulations of rarefied flows in microchannels. Phys. Fluids, 2012.
[21] A. Hantsch, T. Reis, and U. Gross. Moment method boundary conditions for multiphase lattice Boltzmann simulations with partially-wetted walls. Int. J. Multiphase Flow, 7:1–14, 2015.
[22] U. Ghia, K.N. Ghia, and C.T. Shin. High-resolutions for incompressible flow using the Navier- Stokes equations and a multigrid method. J. Comput. Phys., 48:387–411, 1982.
[23] M. Sahin and R.G. Owens. A novel fully implicit finite volume method applied to the lid-driven cavity problem—part i: High Reynolds number flow calculations. Int. J. Numer. Meth. Fluids, 42:57–77, 2003.
[24] O. Botella and R. Peyret. Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids, 27:421–433, 1998.
[25] S. Hou, Q. Zou, G.D. Chen, S.and Doolen, and A.C. Cogley. Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys., 118:329–347, 1995.
[26] M.A. Mussa, S.Abdullah, C.S.N. Azwadi,N. Muhamad, K. Sopian, S. Kartalopoulos, A. Buikis, N. Mastorakis, and L. Vladareanu. Numerical simulation of lid-driven cavity flow using the lattice Boltzmann method. In WSEAS International Conference. Proceedings. Mathematics and Computers in Science and Engineering. WSEAS, 2008.
[27] L.S. Luo,W. Liao, X. Chen,Y. Peng,W. Zhang, et al. Numerics of the lattice Boltzmann method: Effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E, 83(5):056710, 2011.
[28] X. He, X. Shan, and G.D. Doolen. Discrete Boltzmann equation model for nonideal gases. Phys. Rev. E, 57:R13, 1998.
[29] R. Benzi, S. Succi, and M. Vergassola. Turbulence modelling by nonhydrodynamic variables. Europhys. Lett., 13:727, 1990.
[30] P. J Dellar. Nonhydrodynamic modes and a priori construction of shallow water lattice Boltzmann equations. Phys. Rev. E, 65:036309, 2002.
[31] J. Latt and B. Chopard. Lattice Boltzmann method with regularized pre-collision distribution functions. Comput. Fluid., 72:165–168, 2006.
[32] C.H. Bruneau and C. Jouron. An efficient scheme for solving steady incompressible Navier- Stokes equations. J. Comput. Phys., 89:389–413, 1990.
[33] S. Hou, Q. Zou, S. Chen, G. D. Doolen, and A.C. Cogley. Simulation of cavity flow by the lattice boltzmann method. J. Comp. Phys., 118(2)(2):329 –347, 1995.
[34] G. Deng, J. Piquet, P. Queutey, and M. Visonneau. Incompressible flow calculations with a consistent physical interpolation finite volume approach. Comput. Fluids, 23:1029–1047, 1994.