Details

Title

Influence of Cutting Fluid Flow Rate and Cutting Parameters on the Surface Roughness and Flank Wear of TiAlN Coated Tool In Turning AISI 1015 Steel Using Taguchi Method

Journal title

Archives of Metallurgy and Materials

Yearbook

2017

Numer

No 3

Keywords

Metals and Alloys

Divisions of PAS

Nauki Techniczne

Abstract

<jats:title>Abstract</jats:title><jats:p>This paper presents the influence of cutting parameters (Depth of cut, feed rate, spindle speed and cutting fluid flow rate) on the surface roughness and flank wear of physical vapor deposition (PVD) Cathodic arc evaporation coated TiAlN tungsten carbide cutting tool insert during CNC turning of AISI 1015 mild steel. Analysis of Variance has been applied to determine the critical influence of cutting parameters. Taguchi orthogonal test design has been employed to optimize the process parameters affecting surface roughness and tool wear. Depth of cut was found to be the most dominant factor contributing to high surface roughness (67.5%) of the inserts. However, cutting speed, feed rate and flow rate of cutting fluid showed minimal contribution to surface roughness. On the other hand, cutting speed (45.6%) and flow rate of cutting fluid (23%) were the dominant factors influencing tool wear. The optimum cutting conditions for desired surface roughness constitutes the following parameters such as medium cutting speed, low feed rate, low depth of cut and high cutting fluid flow rate. Minimal tool wear was achieved for the following process parameters such as low cutting speed, low feed rate, medium depth of cut and high cutting fluid flow rate.</jats:p>

Publisher

Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Commitee on Metallurgy of Polish Academy of Sciences

Date

2017

Identifier

ISSN 1733-3490

DOI

10.1515/amm-2017-0276

×