Details

Title

Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

Journal title

Archives of Thermodynamics

Yearbook

2016

Issue

No 4

Authors

Keywords

eco-friendly refrigerant ; two-phase ejector ; optimization ; COP ; area ratio ; critical temperature

Divisions of PAS

Nauki Techniczne

Coverage

55-72

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Date

2016

Type

Artykuły / Articles

Identifier

DOI: 10.1515/aoter-2016-0027

Source

Archives of Thermodynamics; 2016; No 4; 55-72

References

Chaiwongsa (2008), Experimental study on a refrigeration system using a two - phase ejector as an expansion device Thermal, Appl Eng, 5, 134. ; Ersoy (2014), Preliminary experimental results on the a refrigeration system using a two - phase ejector as an expander, Int J Refrig, 134. ; Park (2007), Performance of alternative refrigerants for residential air - conditioning applications, Appl Energ, 10, 985, doi.org/10.1016/j.apenergy.2007.05.002 ; Yari (2008), Exegetic analysis of the vapor compression refrigeration cycle using ejector as an expander, Int J Exerg, 326, doi.org/10.1504/IJEX.2008.018114 ; Zhao (2015), Performance analysis of the ejectorexpansion refrigeration cycle using zeotropic mixtures, Int J Refrig, 197, doi.org/10.1016/j.ijrefrig.2015.05.006 ; Bolaji (2014), Theoretical analysis of the energy performance of three low global warming potential hydro - fluorocarbon refrigerants as a alternatives in refrigeration systems IMechE, Power Energy, 134. ; Sarkar (2012), Ejector enhanced vapor compression refrigeration and heat pump systems - a review, Renew Sust Energ Rev, 9, 6647, doi.org/10.1016/j.rser.2012.08.007 ; Liu (2002), Thermodynamic analysis on trans - critical vapor compression / ejection hybrid refrigeration cycle th IIR Conf on Natural Working Fluids, In Proc, 744. ; Dudar (2013), Exergy analysis of operation of two - phase ejector in compression refrigeration systems, Arch Thermodyn, 4, 107. ; Brunin (1997), Comparison of the working domains of some compression heat pumps and a compression - absorption heat pump, Int J Refrig, 5, 308, doi.org/10.1016/S0140-7007(97)00025-X ; Chen (2014), Screening of working fluids for the ejector refrigeration system, Int J Refrig, 1, doi.org/10.1016/j.ijrefrig.2014.07.016 ; Kornhauser (1990), The use of an ejector as a refrigerant expander Purdue Refrigeration Conf, In Proc USNC IIR, 10. ; Sarkar (2008), Optimization of ejector - expansion transcritical CO heat pump cycle, Energ, 9, 1399, doi.org/10.1016/j.energy.2008.04.007 ; Li (2014), Performance characteristics of yf ejector - expansion refrigeration cycle, Appl Energ, 1234. ; Elbel (2016), Review of recent developments in advanced ejector technology, Int J Refrig, 1, doi.org/10.1016/j.ijrefrig.2015.10.031 ; Gaurav (2012), Alternatives to a CH National Conf on Trends and Advances in Mechanical Engineering , YMCA University of Science Technology, Refrigerant Review, 3, 134. ; Nehdi (2007), Performance analysis of the vapour compression cycle using ejector as an expander, Int J Energ Res, 364, doi.org/10.1002/er.1260 ; Wang (2016), An investigation on the component efficiencies of a smal l twophase ejector, Int J Refrig, 26, doi.org/10.1016/j.ijrefrig.2016.08.006 ; Sarkar (2009), Performance characteristics of natural refrigerants based ejector expansion refrigeration cycles IMechE, Power Energy, 5, 223.

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×