Details

Title

Review of numerical models of cavitating flows with the use of the homogeneous approach

Journal title

Archives of Thermodynamics

Yearbook

2016

Numer

No 2

Publication authors

Divisions of PAS

Nauki Techniczne

Publisher

The Committee on Thermodynamics and Combustion of the Polish Academy of Sciences

Date

2016

Identifier

ISSN 1231-0956 ; eISSN 2083-6023

References

Ducoin (2012), Numerical modeling of unsteady cavitating flows around a stationery hydrofoil, Int J Rot Mach, doi.org/10.1155/2012/215678 ; Goncalves (2013), Numerical study of expansion tube problems : towards the simulation of cavitation, Comput Fluids, 1, doi.org/10.1016/j.compfluid.2012.11.019 ; Wu (2005), Time - dependent turbulent cavitating flow computations with interfacial transport and filter - based models, Int J Numer Meth Fl, 49, 739, doi.org/10.1002/fld.1047 ; Senocak (2004), Interfacial dynamics - based model ling of turbulent cavitating flows part model development and steady - state computations, Int J Numer Meth Fl, 44, 1. ; Morgut (2011), Comparison of mass transfer model for the numerical prediction of sheet cavitation around a hydrofoil Flow, Int J Multiph, 620, doi.org/10.1016/j.ijmultiphaseflow.2011.03.005 ; Reynolds (null), Experiments showing the boiling of water in an open tube at ordinary temperatures Scientific Papers on Mechanical and Physical Subject Vol Cambridge Uni Cambridge, II, 1894. ; Kunz (2000), A preconditioned Navier - Stokes method for two - phase flows with application to cavitation prediction, Comput Fluids, 29, doi.org/10.1016/S0045-7930(99)00039-0 ; Konstantinov (2015), Numerical cavitation model for simulation of mass flow stabilization effect in ANSYS CFX, Mod Appl Sci, 9, 21. ; Merkle (1998), Computational modeling of the dynamics of sheet cavitations In rd Grenoble, Proc Int Symp, 3. ; Goncalves (2014), Modeling for isothermal cavitation with a fourequation model Multiphase Flow, Int J, 54. ; Singhal (2002), Mathematical basis and validation of the full cavitation model Fluids, Eng, 124, 617. ; Goel (2008), Surrogate model - based strategy for cryogenic cavitation model validation and sensitivity evaluation, Int J Numer Meth Fl, 58, 969, doi.org/10.1002/fld.1779 ; Sobieski (2011), The basic equations of fluid mechanics in form characteristic of the finite volume method, Techn Sci, 14, 299. ; Ivany (1965), Cavitation bubble col lapse in viscous compressible liquids - numerical analysis Basic, Eng, 87, 977. ; Kubota (1992), A new modeling of cavitating flows : a numerical study of unsteady cavitation on a hydrofoil section Fluid, Mech, 240, 59. ; Frikha (2008), Influence of the cavitation model on the simulation of cloud cavitation on D foil section, Int J Rot Mach, doi.org/10.1155/2008/146234 ; Schnerr (2001), Physical and numerical modeling of unsteady cavitation dynamics In th Multiphase Flow New Orleans, Proc Int Conf, 4, 01. ; Senocack (2001), Numerical simulation of turbulent flows with sheet cavitation In th Pasadena, Proc Int Symp, 4. ; Huang (2011), A modified density based cavitation model for time dependent turbulent cavitating flow computations Chinese n, Sci Bull, 1985, doi.org/10.1007/s11434-011-4540-x ; Žnidarčič (2015), Modeling cavitation in a rapidly changing pressure field - application to a smal l ultrasonic horn, Ultrason Sonochem, 22, 482, doi.org/10.1016/j.ultsonch.2014.05.011 ; Zwart (2004), A two - phase flow model for prediction cavitation dynamics In th Multiphase Flow Yokohama, Proc Int Conf, 5. ; Morgut (2012), Numerical predictions of cavitating flow around model scale propel lers by CFD and advanced model calibration, Int J Rot Mach, doi.org/10.1155/2012/618180 ; Ahuja (2001), Simulations of cavitating flows using hybrid unstructured meshes Fluids, Eng, 123, 331. ; Hohenberg (1977), Theory of dynamic critical phenomena Modern, Rev Phys, 49, 435. ; Merkle (2006), Multi - Disciplinary Computational Analysis in Propulsion In nd ASEE Joint Propulsion Conf, Proc AIAA ASME SAE, 42. ; Shi (2014), A Rayleigh - Plesset based transport model for cryogenic fluid cavitating flow computations China, Sci Phys Mech Astron, 57, 764, doi.org/10.1007/s11433-013-5198-y ; Plesset (1977), Bubble dynamics and cavitation Fluids, Ann Rev Mech, 9, 145, doi.org/10.1146/annurev.fl.09.010177.001045 ; Thorneycroft (1895), Torpedo - boat destroyers Civil Engineers, Inst, 51. ; Frobenius (2003), Threedimensional , unsteady cavitation effects on a single hydrofoil and in a radial pump - measurements and numerical simulations , part two : numerical simulation In th Osaka, Proc Int Symp, 5. ; Park (2009), Multiphase flow analysis of cylinder using a new cavitation model In th, Proc Int Symp Ann Arbor, 7. ; Rayleigh (1917), On the pressure developed in a liquid during the col lapse of a spherical cavity, Philosoph Mag, 34, 94. ; Saito (2003), Numerical analysis of unsteady vaporous cavitating flow around a hydrofoil In th Osaka, Proc Int Symp, 5.

DOI

10.1515/aoter-2016-0013

×