Details

Title

Indoor Positioning by Ultrawide Band Radio Aided Inertial Navigation

Journal title

Metrology and Measurement Systems

Yearbook

2010

Issue

No 3

Authors

Keywords

Ultra-Wideband ; indoor positioning ; inertial navigation

Divisions of PAS

Nauki Techniczne

Coverage

447-460

Publisher

Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation

Date

2010

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10178-010-0038-0 ; ISSN 2080-9050, e-ISSN 2300-1941

Source

Metrology and Measurement Systems; 2010; No 3; 447-460

References

Liu H. (2007), Survey of wireless indoor positioning techniques and systems, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev, 37, 1067. ; IEEE Std 802.11-2007, <i>Standard for Information Technology-Telecommunications and Information Exchange Between Systems-Local and Metropolitan Area Networks-Part 11</i>, 2007. ; ZigBee Alliance. 2009 <a target="_blank" href='http://www.zigbee.org/'>http://www.zigbee.org/</a> ; Gezici S. (2005), Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks, IEEE Signal Processing Magazine, 22, 70. ; Fontana R. (2004), Recent system applications of short-pulse ultrawideband (UWB) technology, IEEE Trans. Microw. Theory Tech, 52, 2087. ; <i>Federal Communications Commission (FCC). Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems</i>, 2002. ; Stoica L. (2005), An ultrawideband system architecture for tag based wireless sensor networks, IEEE Trans. Vehic. Techn, 54, 1632. ; Mahfouz M. (2008), Investigation of high-accuracy indoor 3-D positioning using UWB technology, IEEE Trans. Microw. Theory Tech, 56, 1316. ; <i>Multispectral Solutions, Zebra Enterprise Solutions.</i> Jun. 2010, Sapphire DART (RTLS) product data sheet. <a target="_blank" href='http://zes.zebra.com/pdf/products-datasheets/ds__sapp__dart.pdf'>http://zes.zebra.com/pdf/products-datasheets/ds__sapp__dart.pdf</a> ; <i>Time Domain Corporation.</i> Jun. 2010, PulsON P220 reference Design. <a target="_blank" href='http://www.timedomain.com/products/P220aRD.pdf'>http://www.timedomain.com/products/P220aRD.pdf</a> ; <i>The Ubisense Precise Real-time Location System.</i> Ubisense Ltd. Jun. 2010 <a target="_blank" href='http://www.ubisense.net'>http://www.ubisense.net</a> ; Gonzalez J. (2007), Combination of UWB and GPS for indoor-outdoor vehicle localization, null. ; Tan K. (2007), GPS and UWB integration for indoor positioning, null. ; Jourdan D. (2005), Monte Carlo localization in dense multipath environments using UWB ranging, null, 314. ; A. De Angelis (2009), XIX IMEKO World Congress, 574. ; A. De Angelis (2010), Advances in Measurement Systems. ; Nilsson J. (2009), Signal processing issues in indoor positioning by ultra wide band radio aided inertial navigation, null, 2161. ; A. De Angelis (2009), A low-cost ultra-wideband indoor ranging system, IEEE Trans. Instrum. Meas, 58, 12, 3935. ; A. De Angelis (2009), Characterization and modeling of an experimental UWB pulse-based distance measurement system, IEEE Trans. Instrum. Meas, 58, 5, 14791. ; Dionigi M. (2008), Experimental low-cost short pulse generators, null, 259. ; Britting K. (1971), Inertial Navigation Systems Analysis. ; Jekeli C. (2001), Inertial Navigation Systems with Geodetic Applications, doi.org/10.1515/9783110800234 ; Farrell J. (1999), The Global Positioning System & Inertial Navigation. ; Chatfield A. (1997), Fundamentals of High Accuracy Inertial Navigation, doi.org/10.2514/4.866463 ; Grewal M. (2007), Global Positioning Systems, Inertial Navigation and Integration. ; Yan L. (2007), Asynchronous multirate multisensor information fusion algorithm, IEEE Trans. Aero. Elec. Sys, 43, 1135. ; Skog I. (2009), In-car positioning and navigation technologies - a survey, IEEE Trans. Intell. Tran. Syst, 10, 1, 4. ; Nilsson J. (2010), IEEE/ION Position Location and Navigation System (PLANS). ; Kailath T. (2000), Linear Estimation.
×