Details

Title

Performance comparison of different aerodynamic shapes for autonomous underwater vehicles

Journal title

Archive of Mechanical Engineering

Yearbook

2019

Volume

vol. 66

Issue

No 2

Affiliation

Khalin, Anatoliy : V.N. Karazin Kharkov National University, Kharkiv, Ukraine. ; Kizilova, Nataliya : Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Warsaw, Poland.

Authors

Keywords

autonomous underwater vehivle ; aerodynamic performance ; lifting force ; CFD modeling

Divisions of PAS

Nauki Techniczne

Coverage

171-189

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] F. Muttin. Umbilical deployment modeling for tethered UAV detecting oil pollution from a ship. Applied Ocean Research, 33(4):332–343, 2011. doi: 10.1016/j.apor.2011.06.004.
[2] D. Meyer. Glider Technology for ocean observations: a review. Ocean Science Discussions, 1–26, 2016. doi: 10.5194/os-2016-40.
[3] S. Ruiz, B. Garau, M. Martinez-Ledesma, B. Casas, A. Pascual, G. Vizono, J. Bouffard, E. Heslop, A. Alvarez, P. Testor, and J. Tintoré. New technologies for marine research: five years of glider activities at IMEDEA. Scientia Marina, 76:261–270, 2012. doi: 10.3989/scimar.03622.19L.
[4] M.C. Domingo. An overview of the internet of underwater things. Journal of Network and Computer Applications, 35:1879–1890, 2012. doi: 10.1016/j.jnca.2012.07.012.
[5] J. Yuh, G. Marani, and D.R. Blidberg. Applications of marine robotic vehicles. Intelligent Service Robotics, 4:221–231, 2011. doi: 10.1007/s11370-011-0096-5.
[6] E. Gray. The Devil’s Device: Robert Whitehead and the history of the Torpedo. Naval Institute Press, Annapolis, 1991.
[7] N.D. Kraus. Wave glider dynamic modeling, parameter identification and simulation. PhD Thesis, University of Hawaii, 2012.
[8] J.G. Graver. Underwater gliders: dynamics, control and design. PhD Thesis, Princeton University, NJ 08544, 2005.
[9] H. Stommel. The Slocum Mission. Oceanography, 2(1):22–25, 1989. doi: 10.5670/oceanog.1989.26.
[10] J. Sherman, R.E. Davis, W.B. Owens, and J.Valdes. The autonomous underwater glider “Spray”. IEEE Journal of Oceanic Engineering, 26(4):437–446, 2001. doi: 10.1109/48.972076.
[11] C.C. Eriksen, T.J. Osse, R.D. Light, T. Wen, T.W. Lehmann, P.L. Sabin, J.W. Ballard, and A.M. Chiodi. Seaglider: a long range autonomous underwater vehicle for oceanographic research. IEEE Journal on Oceanic Engineering, 26(4):424–436, 2001. doi: 10.1109/48.972073.
[12] M.Y. Javaid, M. Ovinis, T. Nagarajan, and F.B.M. Hashim. Underwater gliders: a review. MATEC Web of Conferences, 13:02020–5, 2014. doi: 10.1051/matecconf/20141302020.
[13] D.C. Webb, P.J. Simonetti, and C.P. Jones. SLOCUM, an underwater glider propelled by environmental energy. IEEE Journal of Oceanic Engineering, 26(4):447–452, 2001. doi: 10.1109/48.972077.
[14] T.B. Curtin, J.G. Bellingham, J. Catipovic, and D.Webb. Autonomous oceanographic sampling networks. Oceanography, 6(3):86–94, 1993. doi: 10.5670/oceanog.1993.03.
[15] K. Kawaguchi, T. Ura, M. Oride, and T. Sakamaki. Development of shuttle type AUV ALBAC and sea trials for oceanographic measurement. Journal of the Society of Naval Architects of Japan, 178:657–665, 1995 (in Japanese). doi: 10.2534/jjasnaoe1968.1995.178_657.
[16] S. Wood. Autonomous underwater gliders. In A.V. Inzartsev, Editor, Underwater Vehicles, chapter 26, pages 505–530, IntechOpen, 2009. doi: 10.5772/6718.
[17] D. Tsering. China deep-sea exploration: intention and concerns. Maritime Affairs: Journal of the National Maritime Foundation of India, 13(1):91–98, 2017. doi: 10.1080/09733159.2017.1326570.
[18] Ø. Hasvold, N.J. Størkersen, S. Forseth, and T. Lian. Power sources for autonomous underwater vehicles. Journal of Power Sources, 162(2):935–942, 2006. doi: 10.1016/j.jpowsour.2005.07.021.
[19] X. Wang, J. Shang, Z. Luo, L. Tang, X. Zhang, and J. Li. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles. Renewable and Sustainable Energy Reviews, 16(4):1958–1970, 2012. doi: 10.1016/j.rser.2011.12.016.
[20] S. Willcox, J. Manley, and S. Wiggins. The wave glider, an energy-harvesting autonomous surface vessel. Sea Technology, 50(11):29–32, 2009.
[21] T.B. Curtin, D.M. Crimmins, J. Curcio, M. Benjamin, and C. Roper. Autonomous underwater vehicles: trends and transformations. Marine Technology Society Journal, 39(3):65–75, 2005. doi: 10.4031/002533205787442521.
[22] S. Wang, C. Xie, Y. Wang, L. Zhang, W. Jie, and S.J. Hu. Harvesting of PEM fuel cell heat energy for a thermal engine in an underwater glider. Journal of Power Sources, 169(2):338–346, 2007. doi: 10.1016/j.jpowsour.2007.03.043.
[23] K. Isa, M.R. Arshad, and S. Ishak. A hybrid-riven underwater glider model, hydrodynamics estimation, and analysis of the motion control. Ocean Engineering, 81:111–129, 2014. doi: 10.1016/j.oceaneng.2014.02.002.
[24] M.S. Stewart and J. Pavlos. A means to networked persistent undersea surveillance. In Submarine Technology Symposium STS, pages 2–38, 2006.
[25] APL. The Applied Physics Laboratory Biennial 2007 Report, College of Ocean and Fishery Sciences, University of Washington, 2007.
[26] T. Praczyk and P. Szymak. Decision system for a team of autonomous underwater vehicles – Preliminary report. Neurocomputing, 74(17):3323–3334, 2011. doi: 10.1016/j.neucom.2011.05.013.
[27] M.Y. Javaid, M. Ovinis, F.B.M. Hashim, A. Maimun, Y.M. Ahmed, and B. Ullah. Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider. International Journal of Naval Architecture and Ocean Engineering, 9(4):382–389, 2017. doi: 10.1016/j.ijnaoe.2016.09.010.
[28] Y. Singh, S.K. Bhattacharyya, and V.G. Idichandy. CFD approach to modelling, hydrodynamic analysis and motion characteristics of a laboratory underwater glider with experimental results. Journal of Ocean Engineering and Science, 2(2):90–119, 2017. doi: 10.1016/j.joes.2017.03.003.
[29] C. Sun, B. Song, P. Wang, and X. Wang. Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target. International Journal of Naval Architecture and Ocean Engineering, 9(6):693–704, 2017. doi: 10.1016/j.ijnaoe.2016.12.003.
[30] S. Zhang, J. Yu, A. Zhang, and F. Zhang. Spiraling motion of underwater gliders: Modeling, analysis, and experimental results. Ocean Engineering, 60:1–13, 2013. doi: 10.1016/j.oceaneng.2012.12.023.
[31] D.C. Seo and C.D. Williams. CFD Predictions of drag force for a Slocum ocean glider. Technical Report no. TR-2010-07. NRC Canada, 2010. doi: 0.4224/17210700.
[32] K. Alam, T. Ray, and S.G. Anavatti. Design and construction of an autonomous underwater vehicle. Neurocomputing, 142:16–29, 2014. doi: 10.1016/j.neucom.2013.12.055.
[33] Z. Wang, J. Yu, A. Zhang, Y. Wang, and W. Zhao. Parametric geometric model and hydrodynamic shape optimization of a flying-wing structure underwater glider. China Ocean Engineering, 31(6):709–715, 2017. doi: 10.1007/s13344-017-0081-7.
[34] D. Gassier, J. Rebollo, and R. Dumonteil. Implementing a low-cost long-range unmanned underwater vehicle: the SeaDiver Glider. Technical Report, Calhoun Institutional Archive of the Naval Postgraduate School, Monterey, California, 2007.
[35] D. Leandri, V. Nikishov, J.P. Frachet, T. Mathia, Y. Rudnyev, and E. Philippova. Undersea gliders for long-range applications. In O. Limarchenko, editor, Hydrodynamics of Moving Objects. Proceedings of the International Workshop, pages 142–153, Kiev, 2013.
[36] T. Melin. Parametric Airfoil Catalog. Part II. Göttingen 673 to YS930: An Aerodynamic and Geometric Comparison Between Parametrized and Point Cloud Airfoils. Linköping University Electronic Press, 2013.
[37] R.E. Sheldahl, and P.C. Klimas. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Technical Report, Sandia National Laboratories, 1981. doi: 10.2172/6548367.
[38] W. Shyy, Y. Lian, J. Tang, D. Viieru, and H. Liu. Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press, 2007.
[39] R.M. Hubbard. Hydrodynamics technology for an Advanced Expendable Mobile Target (AEMT). Technical Report no. 8013, Applied Physics Laboratory, University of Washington, 1980.
[40] AnSys Fluent User’s Guide. Release 15.0. SAS IP, Inc., 2013.
[41] C. Galiński, A. Dziubiński, and A. Sieradzki. Performance comparison of the optimized inverted joined wing airplane concept and classical configuration airplanes. Archive of Mechanical Engineering, 63(3):455–470, 2016. doi: 10.1515/meceng-2016-0026.
[42] H. Schlichting. Boundary-Layer Theory. 7th edition, McGraw-Hill, 1979.
[43] M. Grossrubatscher. Pilot’s Reference Guide. 10th edition. PilotsReference.com, 2008.

Date

2019.05.15

Type

Artykuły / Articles

Identifier

DOI: 10.24425/ame.2019.128443 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2019; vol. 66; No 2; 171-189
×