Szczegóły

Tytuł artykułu

Cell Structural Reorganization During Induction of Androgenesis in Isolated Microspore Cultures of Triticale (xTriticosecale Wittm.)

Tytuł czasopisma

Acta Biologica Cracoviensia s. Botanica

Rocznik

2010

Wolumin

vol. 52

Numer

No 1

Autorzy publikacji

Wydział PAN

Nauki Biologiczne i Rolnicze

Wydawca

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Data

2010

Identyfikator

ISSN 0001-5296 ; eISSN 1898-0295

Referencje

Bajaj Y. (1990), Haploids in Crop Improvement I, 3. ; Barnabás B. (1991), Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat (<i>Triticum aestivum</i> L.), Theoretical and Applied Genetics, 81, 675. ; Benziman M. (1980), Cellulose biogenesis. Polymerization and crystallization are coupled processes in <i>Acetobacter xylinum.</i>, Proceedings of the National Academy of Sciences U.S.A, 77, 6678. ; Bonet F. (2000), Structural changes during early embryogenesis in wheat pollen, Protoplasma, 211, 94. ; Boutilier K. (2002), Ectopic expression of <i>BABY BOOM</i> triggers a conversion from vegetative to embryogenic growth, The Plant Cell, 14, 1737. ; Cordewener J. (1994), Induction of microspore embryogenesis in <i>Brassica napus</i> L. is accompanied by specific changes in protein synthesis, Planta, 195, 50. ; Custers J. (1994), Temperature controls both gametophytic and sporophytic development in microspore cultures of <i>Brassica napus.</i>, Plant Cell Reports, 13, 267. ; Eady C. (1995), The significance of microspore divisions and division symmetry for vegetative-cell specific transcription and generative cell differentiation, The Plant Cell, 7, 65. ; Eudes F. (2005), Isolated microspore culture of Canadian 6x triticale cultivars, Plant Cell Tissue and Organ Culture, 82, 233. ; Garrido D. (1995), Cellular changes during the acquisition of embryogenic potential in isolated pollen grains of <i>Nicotiana tabacum.</i>, Protoplasma, 186, 220. ; Gervais G. (2000), Rearrangement of the actin filament and microtubule cytoskeleton during induction of microspore embryogenesis in <i>Brassica napus</i> L. cv Topas, Protoplasma, 213, 194. ; Giddings T. (1991), The Cytoskeletal Basis of Plant Growth and Form, 85. ; Goddard R. (1994), Microtubule components of the plant cell cytoskeleton, Plant Physiology, 104, 1. ; Gonzáles J. (2005), Microspore development during in vitro androgenesis in triticale, Biologia Plantarum, 4, 1, 23. ; Hause G. (1992), Microtubule and actin filament configuration during microspore and pollen development in <i>Brassica napus</i> cv. Topas, Canadial Journal of Botany, 70, 1369. ; Hause B. (1993), Cytoskeletal changes and induction of embryogenesis in microspore and pollen cultures of <i>Brassica napus</i> L, Cell Biology International, 17, 2, 153. ; Hause B. (1994), Expression of polarity during early development of microspore-derived and zygotic embryos of <i>Brassica napus</i> L. cv. Topas, Botanica Acta, 107, 6, 407. ; Huang B. (1986), Haploids of Higher Plants In Vitro, 91. ; Indrianto A. (1999), Assessment of various stresses and carbohydrates for their effect on the induction of embryogenesis in isolated wheat microspores, Plant Science, 143, 1, 71. ; Indrianto A. (2001), Tracking individual wheat microspores <i>in vitro</i>: identification of embryogenic microspores and body axis formation in the embryo, Planta, 212, 163. ; Kallioniemi O. (1988), Comparison of fresh and paraffinembedded tissue as starting material for DNA flow cytometry and evaluation of intratumor heterogeneity, Cytometry, 9, 164. ; Kasha K. (2003), Doubled Haploid Production in Crop Plants, 43. ; Magnard J. (2000), Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize, Plant Molecular Biology, 44, 559. ; de Maraschin SF. 2005. Androgenic switch in barley microspores. Ph.D. dissertation, University of Leyden. Ridderprint, Ridderkerk, The Netherlands. ; S. de Maraschin (2005a), Androgenic switch: an example of plant embryogenesis from the male gametophyte perspective, Journal of Experimental Botany, 56, 417, 1711. ; S. de Maraschin (2005b), Time-lapse tracking of barley androgenesis reveals position-determined cell death within proembryos, Planta, 220, 531. ; S. de Maraschin (2005c), Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis, Planta, 221, 459. ; Masssonneau A. (2005), Multicellular structures developing during maize microspore culture express endosperm and embryo-specific genes and show different embryogenic potentialities, European Journal of Cell Biology, 84, 663. ; Mordhorst A. (1997), <i>Plant Embryogenesis.</i> Critical Review, Plant Science, 16, 535. ; Obert B. (2004), Colchicine induced embryogenesis in maize, Plant Cell Tissue and Organ Culture, 77, 283. ; Obert B. (2005), Morphological events in cultures of mechanically isolated maize microspores, In Vitro Cellular and Developmental Biology - Plant, 41, 775. ; Oleszczuk S. (2004), Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (<i>xTriticosecale</i> Wittmack) cv Bogo, Plant Cell Reports, 22, 885. ; Pauk J. (2000), In vitro androgenesis of triticale in isolated microspore culture, Plant Cell Tissue and Organ Culture, 61, 221. ; Pauk J. (2003), Doubled Haploid Production in Crop Plants. A Manual, 129, doi.org/10.1007/978-94-017-1293-4_20 ; Pechan P. (1988), Identification of potentially embryogenic microspores in <i>Brassica napus.</i>, Physiologia Plantarum, 74, 377. ; Pulido A. (2005), Cytological and ultrastructural changes induced in anther and isolated-microspore cultures, Journal of Structural Biology, 149, 170. ; Pulli S. (2003), Doubled Haploid Production in Crop Plants. A Manual, 151. ; Raina S. (1998), High-frequency embryogenesis and plantlet regeneration from isolated microspores of indica rice, Plant Cell Reports, 17, 12, 957. ; Ramírez C. (2001), The early microspore embryogenesis pathway in barley is accompanied by concrete ultrastructural and expression changes, International Journal of Developmental Biology, 45, 57. ; Reynolds T. (1997), Pollen embryogenesis, Plant Molecular Biology, 33, 1. ; Seagull R. (1992), A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during <i>in vitro</i> cotton fiber development, Journal of Cell Science, 101, 561. ; Simmonds D. (1994), Biomechanics of Active Movement and Division of Cells, 569, doi.org/10.1007/978-3-642-78975-5_34 ; Simmonds D. (1999), Significance of preprophase band of microtubules in the induction of microspores embryogenesis of <i>Brassica napus.</i>, Planta, 208, 383. ; Staiger C. (2000), Actin: A dynamic framework for multiple plant cell functions, 129, doi.org/10.1007/978-94-015-9460-8 ; Stoeckel H. (2002), Plasmalemmal voltage-activated K<sup>+</sup> currents in protoplasts from tobacco BY-2 cells: possible regulation by actin microfilaments?, Protoplasma, 220, 79. ; Straight A. (2000), Microtubules, membranes and cytokinesis, Current Biology, 10, 760. ; Sunderland N. (1973), Plant Tissue and Cell Culture, 205. ; Supena E. (2008), Regeneration of zygotic-like microspore-derived embryos suggests an important role for the suspensor in early embryo patterning, Journal of Experimental Botany, 59, 4, 803. ; Telmer C. (1993), Microspore development in <i>Brassica napus</i> and the effect of high temperature on division <i>in vivo</i> and <i>in vitro.</i>, Protoplasma, 172, 154. ; Telmer C. (1995), Cellular changes during heat shock induction and embryo development of cultured microspores of <i>Brassica napus</i> cv. Topas, Protoplasma, 185, 106. ; Terasaki M. (1994), Cell Biology: A Laboratory Handbook, 381. ; Testillano P. (2002), Young microspore derived maize embryos show two domains with defined features also present in zygotic embryogen-esis, International Journal of Developmental Biology, 46, 1035. ; Touraev A. (1996a), Stress as the major signal controlling the developmental of tobacco microspores: towards a unified model of induction of microspore/pollen embryogenesis, Planta, 200, 144, doi.org/10.1007/BF00196662 ; Touraev A. (1996b), Stress-induced microspore embryogenesis in tobacco: an optimized system for molecular studies, Plant Cell Reports, 15, 561. ; Touraev A. (1997), Initiation of embryogenesis by stress, Trends Plant Science, 2, 297. ; Touraev A. (2000), Fundamental aspects of microspore embryogenesis, null, 205. ; A. van Lammeren (1985), Structure and function of microtubular cytoskeleton during pollen development in <i>Gasteria verrucosa</i> (Mill.) H. Duval, Planta, 165, 1. ; Verma D. (2001), Cytokinesis and building of the cell plate in plants, Annual Review of Plant Physiology and Plant Molecular Biology, 52, 751. ; Vitha S. (2000), Actin: A Dynamic Framework for Multiple Plant Cell Functions, 619, doi.org/10.1007/978-94-015-9460-8_35 ; Volkmann D. (1999), Actin cytoskeleton in plants: from transport networks to signaling networks, Microscopy Research and Technique, 47, 135. ; Wasteneys G. (2002), Microtubule organization in the green kingdom: chaos or self order?, Journal of Cell Science, 115, 1345. ; Webb M. (1991), The microtubular cytoskeleton during development of the zygote, proembryo and free-nuclear endosperm in <i>Arabidopsis thaliana</i> (L.) Heynh, Planta, 184, 187. ; Wedzony M. (2003), Doubled Haploid Production in Crop Plants - A Manual, 123, doi.org/10.1007/978-94-017-1293-4_19 ; Zaki M. (1990), Structural changes during the first divisions of embryos resulting from anther and free microspore culture in, Brassica napus. Protoplasma, 156, 149. ; Zaki M. (1991), Microspore-derived embryos in <i>Brassica</i>: the significance of the division symmetry in pollen mitosis I to embryogenic development, Sexual Plant Reproduction, 4, 48, doi.org/10.1007/BF00194572 ; Zhao J. (1996), Induction of embryogenesis with colchicine instead of heat in microspores of <i>Brassica napus</i> L. cv Topas, Planta, 189, 433. ; Zheng M. (2003), Doubled Haploid Production in Crop Plants. A Manual, 83, doi.org/10.1007/978-94-017-1293-4_14 ; Zhuang J. (1983), Cell and Tissue Culture Techniques for Cereal Crop Improvement, 431. ; Zoriniants S. (2005), Biotechnology in Agriculture and Forestry, vol. 56. Haploids in crop improvement II, 35. ; Zur I. (2008), Stress-induced changes important for effective androgenic induction in isolated microspore culture of triticale (x<i>Triticosecale</i> Wittm.), Plant Cell, Tissue and Organ Culture, 94, 319. ; Zur I. (2009), Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale (x<i>Triticosecale</i> Wittm.), Plant Cell Reports, 28, 1279.

DOI

10.2478/v10182-010-0010-z

×