Details

Title

Responses of Root Growth and Protective Enzymes to Copper Stress in Turfgrass

Journal title

Acta Biologica Cracoviensia s. Botanica

Yearbook

2010

Volume

vol. 52

Issue

No 2

Authors

Divisions of PAS

Nauki Biologiczne i Rolnicze

Publisher

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Date

2010

Identifier

DOI: 10.2478/v10182-010-0017-5 ; ISSN 0001-5296 ; eISSN 1898-0295

Source

Acta Biologica Cracoviensia s. Botanica; 2010; vol. 52; No 2

References

Alaoui-Sossé B. (2004), Effect of copper on growth in cucumber plants (<i>Cucumis sativus</i>) and its relationships with carbohydrate accumulation and changes in ion contents, Plant Science, 166, 1213, doi.org/10.1016/j.plantsci.2003.12.032 ; Bradley R. (1981), Mycorrhizal infection and resistance to heavy metal toxicity in <i>Calluna vulgaris.</i>, Nature, 292, 335, doi.org/10.1038/292335a0 ; Choudhary M. (2007), Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium <i>Spirulina platensis</i>-S5, Ecotoxicol-ogy and Environmental Safety, 66, 204, doi.org/10.1016/j.ecoenv.2006.02.002 ; Demirevska-Kepova K. (2004), Biochemical changes in barley plants after excessive supply of copper and manganese, Environmental and Experimental Botany, 52, 253, doi.org/10.1016/j.envexpbot.2004.02.004 ; Dietz K. (1999), Heavy Metal Stress in Plants from Molecules to Ecosystems, 73, doi.org/10.1007/978-3-662-07745-0_4 ; Fernandes J. (1991), Biochemical, physiological, and structural effect of excess copper in plants, Botanical Review, 57, 246, doi.org/10.1007/BF02858564 ; Groppa M. (2008), Inhibition of root growth and polyamine metabolism in Sunflower (<i>Helianthus annuus</i>) seedlings under cadmium and copper stress, Biological Trace Element Research, 126, 246, doi.org/10.1007/s12011-008-8191-y ; Hall J. (2002), Cellular mechanisms for heavy metal detoxification and tolerance, Journal of Experimental Botany, 53, 1, doi.org/10.1093/jexbot/53.366.1 ; Hu K. (2007), Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress, Plant Growth Regulation, 53, 173, doi.org/10.1007/s10725-007-9216-9 ; Ke W. (2007), Accumulation, subcellular localization and ecophysiological responses to copper stress, Plant and Soil, 292, 291, doi.org/10.1007/s11104-007-9229-1 ; Khatun S. (2008), Copper toxicity in Withania somnifera: growth and antioxidant enzymes, Environmental and Experimental Botany, 64, 279, doi.org/10.1016/j.envexpbot.2008.02.004 ; Kováčik J. (2009), Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in <i>Matricaria chamomilla</i> plants, Plant and Soil, 320, 231, doi.org/10.1007/s11104-009-9889-0 ; Liang Y. (2003), Antioxidative defenses and water deficit-induced oxidative damage in rice (<i>Oryza sativa</i> L.) growing on non-flooded paddy soils with ground mulching, Plant and Soil, 257, 407, doi.org/10.1023/A:1027313902195 ; Liu J. (2005), Differences in accumulation and physiological response to copper stress in three populations of, Elsholtzia haichowensis S. Water Air and Soil Pollution, 168, 5, doi.org/10.1007/s11270-005-0215-z ; Liu W. (1985), Effects of copper on growth, CAT and IAA oxidase activities in cucumber seedling, Plant Physiology Communications, 3, 22. ; Lombardi L. (2005), Copper toxicity in <i>Prunus cerasifera</i>: growth and antioxidant enzymes responses of in vitro grown plants, Plant Science, 168, 797, doi.org/10.1016/j.plantsci.2004.10.012 ; Luna C. (1994), Oxidative damage caused by excess copper in oat leaves, Plant and Cell Physiology, 35, 11. ; Madejón P. (2009), Copper-induced oxidative damage and enhanced antioxidant defenses in root apex of maize cultivars differing in Cu tolerance, Environmental and Experimental Botany, 67, 415, doi.org/10.1016/j.envexpbot.2009.08.006 ; Maksymiec W. (2007), Effects of methyl jasmonate and excess copper on root and leaf growth, Biologia Plantarum, 51, 322, doi.org/10.1007/s10535-007-0062-4 ; Meloni D. (2003), Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress, Environmental and Experimental Botany, 49, 69, doi.org/10.1016/S0098-8472(02)00058-8 ; Mittler R. (2004), Abiotic stress series. Reactive oxygen gene network of plants, Trends in Plant Science, 9, 490, doi.org/10.1016/j.tplants.2004.08.009 ; Monferrán M. (2009), Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte <i>Potamogeton pusillus.</i>, Environmental Pollution, 157, 2570, doi.org/10.1016/j.envpol.2009.02.034 ; Monnet F. (2006), Toxicity of copper excess on the lichen <i>Dermatocarpon luridum</i>: Antioxidant enzyme activities, Chemosphere, 65, 1806, doi.org/10.1016/j.chemosphere.2006.04.022 ; Ouzounidou G. (1995), Responses of maize (<i>Zea mays</i> L.) plants to copper stress. I, Growth. Environmental and Experimental Botany, 35, 167, doi.org/10.1016/0098-8472(94)00049-B ; Ozden M. (2009), Effects of praline on antioxidant system in leaves of grapevine (<i>Vitis Vinifera</i> L.) exposed to oxidative stress by H<sub>2</sub>O<sub>2</sub>, Scientia Horticulturae, 119, 163, doi.org/10.1016/j.scienta.2008.07.031 ; Panda S. (2008), Impact of copper on reactive oxygen species, lipid peroxidation and antioxidants in <i>Lemna minor.</i>, Biologia Plantarum, 52, 561, doi.org/10.1007/s10535-008-0111-7 ; Scandalios J. (1993), Oxygen stress and superoxide dismutases, Plant Physiology, 101, 7, doi.org/10.1104/pp.101.1.7 ; Shalata A. (2001), Response of the cultivated tomato and its wild salt-tolerant relative <i>Lycopersicon pennellii</i> to salt-dependent oxidative stress: the root antioxidative system, Physiologia Plantarum, 112, 487, doi.org/10.1034/j.1399-3054.2001.1120405.x ; Sundar D. (2004), Localization of antioxidant enzymes in the cellular compartments of sorghum leaves, Plant Growth Regulation, 44, 157, doi.org/10.1023/B:GROW.0000049418.92833.d6 ; Tanyolaç D. (2007), Changes in photochemical and antioxidant enzyme activities in maize (<i>Zea mays</i> L.) leaves exposed to excess copper, Chemosphere, 67, 89, doi.org/10.1016/j.chemosphere.2006.09.052 ; Teisseire H. (2000), Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (<i>Lemna minor</i>), Plant Science, 153, 65, doi.org/10.1016/S0168-9452(99)00257-5 ; Wang S. (2005), Different responses to Cu stress of different <i>Brassica juncea</i> L species, Journal of Biology, 22, 30. ; Weckx J. (1996), Oxidative damage and defense mechanisms in primary leaves of <i>Phaseolus vulgaris</i> as a result of root assimilation of toxic amounts of copper, Physiologia Plantarum, 96, 506, doi.org/10.1111/j.1399-3054.1996.tb00465.x ; Wei L. (2008), Copper accumulation and tolerance in <i>Chrysanthemum coronarium</i> L. and <i>Sorghum sudanense</i> L, Archives of Environmental Contamination and Toxicology, 55, 238, doi.org/10.1007/s00244-007-9114-1 ; Zhang L. (2005), Effects of cadmium stress on the growth and physiological characteristics of wheat seedlings, Chinese Journal of Ecology, 24, 458. ; Zhang Z. (2003), The Experimental Guide for Plant Physiology.
×