Details Details PDF BIBTEX RIS Title Responses of Root Growth and Protective Enzymes to Copper Stress in Turfgrass Journal title Acta Biologica Cracoviensia s. Botanica Yearbook 2010 Volume vol. 52 Issue No 2 Authors Zhao, Shulan ; Liu, Qing ; Qi, Yanting ; Duo, Lian Divisions of PAS Nauki Biologiczne i Rolnicze Publisher Biological Commission of the Polish Academy of Sciences – Cracow Branch Date 2010 Identifier DOI: 10.2478/v10182-010-0017-5 ; ISSN 0001-5296 ; eISSN 1898-0295 Source Acta Biologica Cracoviensia s. Botanica; 2010; vol. 52; No 2 References Alaoui-Sossé B. (2004), Effect of copper on growth in cucumber plants (<i>Cucumis sativus</i>) and its relationships with carbohydrate accumulation and changes in ion contents, Plant Science, 166, 1213, doi.org/10.1016/j.plantsci.2003.12.032 ; Bradley R. (1981), Mycorrhizal infection and resistance to heavy metal toxicity in <i>Calluna vulgaris.</i>, Nature, 292, 335, doi.org/10.1038/292335a0 ; Choudhary M. (2007), Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium <i>Spirulina platensis</i>-S5, Ecotoxicol-ogy and Environmental Safety, 66, 204, doi.org/10.1016/j.ecoenv.2006.02.002 ; Demirevska-Kepova K. (2004), Biochemical changes in barley plants after excessive supply of copper and manganese, Environmental and Experimental Botany, 52, 253, doi.org/10.1016/j.envexpbot.2004.02.004 ; Dietz K. (1999), Heavy Metal Stress in Plants from Molecules to Ecosystems, 73, doi.org/10.1007/978-3-662-07745-0_4 ; Fernandes J. (1991), Biochemical, physiological, and structural effect of excess copper in plants, Botanical Review, 57, 246, doi.org/10.1007/BF02858564 ; Groppa M. (2008), Inhibition of root growth and polyamine metabolism in Sunflower (<i>Helianthus annuus</i>) seedlings under cadmium and copper stress, Biological Trace Element Research, 126, 246, doi.org/10.1007/s12011-008-8191-y ; Hall J. (2002), Cellular mechanisms for heavy metal detoxification and tolerance, Journal of Experimental Botany, 53, 1, doi.org/10.1093/jexbot/53.366.1 ; Hu K. (2007), Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress, Plant Growth Regulation, 53, 173, doi.org/10.1007/s10725-007-9216-9 ; Ke W. (2007), Accumulation, subcellular localization and ecophysiological responses to copper stress, Plant and Soil, 292, 291, doi.org/10.1007/s11104-007-9229-1 ; Khatun S. (2008), Copper toxicity in Withania somnifera: growth and antioxidant enzymes, Environmental and Experimental Botany, 64, 279, doi.org/10.1016/j.envexpbot.2008.02.004 ; Kováčik J. (2009), Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in <i>Matricaria chamomilla</i> plants, Plant and Soil, 320, 231, doi.org/10.1007/s11104-009-9889-0 ; Liang Y. (2003), Antioxidative defenses and water deficit-induced oxidative damage in rice (<i>Oryza sativa</i> L.) growing on non-flooded paddy soils with ground mulching, Plant and Soil, 257, 407, doi.org/10.1023/A:1027313902195 ; Liu J. (2005), Differences in accumulation and physiological response to copper stress in three populations of, Elsholtzia haichowensis S. Water Air and Soil Pollution, 168, 5, doi.org/10.1007/s11270-005-0215-z ; Liu W. (1985), Effects of copper on growth, CAT and IAA oxidase activities in cucumber seedling, Plant Physiology Communications, 3, 22. ; Lombardi L. (2005), Copper toxicity in <i>Prunus cerasifera</i>: growth and antioxidant enzymes responses of in vitro grown plants, Plant Science, 168, 797, doi.org/10.1016/j.plantsci.2004.10.012 ; Luna C. (1994), Oxidative damage caused by excess copper in oat leaves, Plant and Cell Physiology, 35, 11. ; Madejón P. (2009), Copper-induced oxidative damage and enhanced antioxidant defenses in root apex of maize cultivars differing in Cu tolerance, Environmental and Experimental Botany, 67, 415, doi.org/10.1016/j.envexpbot.2009.08.006 ; Maksymiec W. (2007), Effects of methyl jasmonate and excess copper on root and leaf growth, Biologia Plantarum, 51, 322, doi.org/10.1007/s10535-007-0062-4 ; Meloni D. (2003), Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress, Environmental and Experimental Botany, 49, 69, doi.org/10.1016/S0098-8472(02)00058-8 ; Mittler R. (2004), Abiotic stress series. Reactive oxygen gene network of plants, Trends in Plant Science, 9, 490, doi.org/10.1016/j.tplants.2004.08.009 ; Monferrán M. (2009), Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte <i>Potamogeton pusillus.</i>, Environmental Pollution, 157, 2570, doi.org/10.1016/j.envpol.2009.02.034 ; Monnet F. (2006), Toxicity of copper excess on the lichen <i>Dermatocarpon luridum</i>: Antioxidant enzyme activities, Chemosphere, 65, 1806, doi.org/10.1016/j.chemosphere.2006.04.022 ; Ouzounidou G. (1995), Responses of maize (<i>Zea mays</i> L.) plants to copper stress. I, Growth. Environmental and Experimental Botany, 35, 167, doi.org/10.1016/0098-8472(94)00049-B ; Ozden M. (2009), Effects of praline on antioxidant system in leaves of grapevine (<i>Vitis Vinifera</i> L.) exposed to oxidative stress by H<sub>2</sub>O<sub>2</sub>, Scientia Horticulturae, 119, 163, doi.org/10.1016/j.scienta.2008.07.031 ; Panda S. (2008), Impact of copper on reactive oxygen species, lipid peroxidation and antioxidants in <i>Lemna minor.</i>, Biologia Plantarum, 52, 561, doi.org/10.1007/s10535-008-0111-7 ; Scandalios J. (1993), Oxygen stress and superoxide dismutases, Plant Physiology, 101, 7, doi.org/10.1104/pp.101.1.7 ; Shalata A. (2001), Response of the cultivated tomato and its wild salt-tolerant relative <i>Lycopersicon pennellii</i> to salt-dependent oxidative stress: the root antioxidative system, Physiologia Plantarum, 112, 487, doi.org/10.1034/j.1399-3054.2001.1120405.x ; Sundar D. (2004), Localization of antioxidant enzymes in the cellular compartments of sorghum leaves, Plant Growth Regulation, 44, 157, doi.org/10.1023/B:GROW.0000049418.92833.d6 ; Tanyolaç D. (2007), Changes in photochemical and antioxidant enzyme activities in maize (<i>Zea mays</i> L.) leaves exposed to excess copper, Chemosphere, 67, 89, doi.org/10.1016/j.chemosphere.2006.09.052 ; Teisseire H. (2000), Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (<i>Lemna minor</i>), Plant Science, 153, 65, doi.org/10.1016/S0168-9452(99)00257-5 ; Wang S. (2005), Different responses to Cu stress of different <i>Brassica juncea</i> L species, Journal of Biology, 22, 30. ; Weckx J. (1996), Oxidative damage and defense mechanisms in primary leaves of <i>Phaseolus vulgaris</i> as a result of root assimilation of toxic amounts of copper, Physiologia Plantarum, 96, 506, doi.org/10.1111/j.1399-3054.1996.tb00465.x ; Wei L. (2008), Copper accumulation and tolerance in <i>Chrysanthemum coronarium</i> L. and <i>Sorghum sudanense</i> L, Archives of Environmental Contamination and Toxicology, 55, 238, doi.org/10.1007/s00244-007-9114-1 ; Zhang L. (2005), Effects of cadmium stress on the growth and physiological characteristics of wheat seedlings, Chinese Journal of Ecology, 24, 458. ; Zhang Z. (2003), The Experimental Guide for Plant Physiology.