Details

Title

Response of Maize, Pea and Radish Roots to Allelochemical Stress

Journal title

Acta Biologica Cracoviensia s. Botanica

Yearbook

2011

Volume

vol. 53

Issue

No 1

Authors

Keywords

Allelopathic stress ; p-coumaric acid ; ferulic acid ; lipid peroxidation ; lipoxygenase ; pea ; plasma membrane injury ; radish ; roots ; sweet maize

Divisions of PAS

Nauki Biologiczne i Rolnicze

Publisher

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10182-011-0005-4 ; ISSN 0001-5296 ; eISSN 1898-0295

Source

Acta Biologica Cracoviensia s. Botanica; 2011; vol. 53; No 1

References

Baracat-Pereira M. (2001), Biochemical properties of soybean leaf lipoxygenases: Presence of soluble and membrane bound forms, Plant Physiology and Biochemistry, 39, 91, doi.org/10.1016/S0981-9428(00)01223-7 ; Baziramakenga R. (1995), Effects of benzoic and cinnamic acids on membrane permeability of soybean roots, Journal of Chemical Ecology, 21, 1271, doi.org/10.1007/BF02027561 ; Blee E. (1998), Phytooxylipins and plant defence reactions, Progress in Lipid Research, 37, 33, doi.org/10.1016/S0163-7827(98)00004-6 ; Block A. (2005), Coronatine and salicylic acid: The battle between <i>Arabidopsis</i> and <i>Pseudomonas</i> for phytohormone control, Molecular Plant Pathology, 6, 79, doi.org/10.1111/j.1364-3703.2004.00265.x ; Bradford M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72, 248, doi.org/10.1016/0003-2697(76)90527-3 ; Catala A. (2006), An overview of lipid peroxidation with emphasis on outer segments of photoreceptors and the chemi-luminescence assay, International Journal of Biochemistry and Cell Biology, 38, 1482, doi.org/10.1016/j.biocel.2006.02.010 ; Catala A. (2009), Lipid peroxidation of membrane phospho-lipids generates hydroxy-alkenals and oxidized phospho-lipids active in physiological and/or pathological conditions, Chemistry and Physics of Lipids, 157, 1, doi.org/10.1016/j.chemphyslip.2008.09.004 ; Cruz-Ortega R. (2002), Allelochemical stress produced by aqueous leachates of Callicarpa acuminate: effects on roots of bean, maize and tomato, Physiologia Plantarum, 116, 20, doi.org/10.1034/j.1399-3054.2002.1160103.x ; Eckardt N. (2008), Oxylipin signalling in plant stress responses, The Plant Cell, 20, 495, doi.org/10.1105/tpc.108.059485 ; Eshdat Y. (1997), Plant glutathione peroxidases, Physiologia Plantarum, 100, 234, doi.org/10.1111/j.1399-3054.1997.tb04779.x ; Feussner I. (2002), The lipoxygenase pathway, Annual Review of Plant Biology, 53, 275, doi.org/10.1146/annurev.arplant.53.100301.135248 ; Galindo J. (1999), Dehydrozaluzanin c, a natural sesquiterpenolide, causes rapid plasma membrane leakage, Phytochemistry, 52, 805, doi.org/10.1016/S0031-9422(99)00303-9 ; Gibian M. (1987), Product yield in oxygenation of linoleate by soybean lipoxygenase: the value of the molecular extinction coefficient in the spectrophotometric assay, Analytical Biochemistry, 163, 343, doi.org/10.1016/0003-2697(87)90234-X ; Glass A. (1974), Influence of phenolic acids on ion uptake. IV. Depolarization of membrane potentials, Plant Physiology, 54, 855, doi.org/10.1104/pp.54.6.855 ; Gmerek J. (2010), Generation of active oxygen species in roots of maize, pea and radish as response to exogenous ferulic and p-coumaric acids, Allelopathy Journal, 25, 2, 475. ; Gutteride J. (1988), Oxygen Radicals and Tissue Injury, 9. ; Heath R. (1968), Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Archives of Biochemistry and Biophysics, 125, 189, doi.org/10.1016/0003-9861(68)90654-1 ; Kacperska A. (1991), Plant resistance on environmental abiotic stress factors and the methods of its estimation, Postępy Nauk Rolniczych, 1, 2, 21. ; Lara-NUńez A. (2006), Allelochemical stress causes inhibition of growth and oxidative damage in <i>Lycopersicon esculentum</i> Mill, Plant, Cell and Environment, 29, 2009, doi.org/10.1111/j.1365-3040.2006.01575.x ; Liavonchanka A. (2006), Lipoxygenases: occurrence, functions and catalysis, Journal of Plant Physiology, 163, 348, doi.org/10.1016/j.jplph.2005.11.006 ; Macri F. (1986), Salicylate-collapsed membrane potential in pea stem mitochondria, Physiologia Plantarum, 67, 136, doi.org/10.1111/j.1399-3054.1986.tb02434.x ; Nigam S. (2000), Phospholipase A2s and lipid peroxidation, Biochimica et Biophysica Acta, 1488, 167. ; Politycka B. (1996), Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids, Acta Physiologiae Plantarum, 4, 365. ; Politycka B. (2004), Oxidative burst and lipoxygenase activity induced by hydroxycinnamic acids in cucumber roots, Allelopathy Journal, 14, 2, 197. ; Porta H. (2002), Plant lipoxygenases. Physiological and molecular features, Physiologia Plantarum, 130, 15. ; Siedow J. (1991), Plant lipoxygenase: structure and function, Annual Review of Plant Physiology and Plant Molecular Biology, 42, 145, doi.org/10.1146/annurev.pp.42.060191.001045 ; Vaugham D. (1991), Plant Root Growth. An Ecological Perspective, 399. ; Vick B. (1987), Metabolism, Function and Structure of Plant Lipids, 383, doi.org/10.1007/978-1-4684-5263-1_71 ; Wang X. (1987), Effect of a substituted pyridazinone on the decrease of lipoxygenase activity in soybean cotyledons, Plant Science, 51, 29, doi.org/10.1016/0168-9452(87)90217-2 ; Zeng R. (2001), Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants, Agronomy Journal, 93, 72, doi.org/10.2134/agronj2001.93172x
×