Response of Maize, Pea and Radish Roots to Allelochemical Stress

Journal title

Acta Biologica Cracoviensia s. Botanica




No 1

Publication authors

Divisions of PAS

Nauki Biologiczne i Rolnicze


Biological Commission of the Polish Academy of Sciences – Cracow Branch




ISSN 0001-5296 ; eISSN 1898-0295


Baracat-Pereira M. (2001), Biochemical properties of soybean leaf lipoxygenases: Presence of soluble and membrane bound forms, Plant Physiology and Biochemistry, 39, 91, ; Baziramakenga R. (1995), Effects of benzoic and cinnamic acids on membrane permeability of soybean roots, Journal of Chemical Ecology, 21, 1271, ; Blee E. (1998), Phytooxylipins and plant defence reactions, Progress in Lipid Research, 37, 33, ; Block A. (2005), Coronatine and salicylic acid: The battle between <i>Arabidopsis</i> and <i>Pseudomonas</i> for phytohormone control, Molecular Plant Pathology, 6, 79, ; Bradford M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 72, 248, ; Catala A. (2006), An overview of lipid peroxidation with emphasis on outer segments of photoreceptors and the chemi-luminescence assay, International Journal of Biochemistry and Cell Biology, 38, 1482, ; Catala A. (2009), Lipid peroxidation of membrane phospho-lipids generates hydroxy-alkenals and oxidized phospho-lipids active in physiological and/or pathological conditions, Chemistry and Physics of Lipids, 157, 1, ; Cruz-Ortega R. (2002), Allelochemical stress produced by aqueous leachates of Callicarpa acuminate: effects on roots of bean, maize and tomato, Physiologia Plantarum, 116, 20, ; Eckardt N. (2008), Oxylipin signalling in plant stress responses, The Plant Cell, 20, 495, ; Eshdat Y. (1997), Plant glutathione peroxidases, Physiologia Plantarum, 100, 234, ; Feussner I. (2002), The lipoxygenase pathway, Annual Review of Plant Biology, 53, 275, ; Galindo J. (1999), Dehydrozaluzanin c, a natural sesquiterpenolide, causes rapid plasma membrane leakage, Phytochemistry, 52, 805, ; Gibian M. (1987), Product yield in oxygenation of linoleate by soybean lipoxygenase: the value of the molecular extinction coefficient in the spectrophotometric assay, Analytical Biochemistry, 163, 343, ; Glass A. (1974), Influence of phenolic acids on ion uptake. IV. Depolarization of membrane potentials, Plant Physiology, 54, 855, ; Gmerek J. (2010), Generation of active oxygen species in roots of maize, pea and radish as response to exogenous ferulic and p-coumaric acids, Allelopathy Journal, 25, 2, 475. ; Gutteride J. (1988), Oxygen Radicals and Tissue Injury, 9. ; Heath R. (1968), Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Archives of Biochemistry and Biophysics, 125, 189, ; Kacperska A. (1991), Plant resistance on environmental abiotic stress factors and the methods of its estimation, Postępy Nauk Rolniczych, 1, 2, 21. ; Lara-NUńez A. (2006), Allelochemical stress causes inhibition of growth and oxidative damage in <i>Lycopersicon esculentum</i> Mill, Plant, Cell and Environment, 29, 2009, ; Liavonchanka A. (2006), Lipoxygenases: occurrence, functions and catalysis, Journal of Plant Physiology, 163, 348, ; Macri F. (1986), Salicylate-collapsed membrane potential in pea stem mitochondria, Physiologia Plantarum, 67, 136, ; Nigam S. (2000), Phospholipase A2s and lipid peroxidation, Biochimica et Biophysica Acta, 1488, 167. ; Politycka B. (1996), Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids, Acta Physiologiae Plantarum, 4, 365. ; Politycka B. (2004), Oxidative burst and lipoxygenase activity induced by hydroxycinnamic acids in cucumber roots, Allelopathy Journal, 14, 2, 197. ; Porta H. (2002), Plant lipoxygenases. Physiological and molecular features, Physiologia Plantarum, 130, 15. ; Siedow J. (1991), Plant lipoxygenase: structure and function, Annual Review of Plant Physiology and Plant Molecular Biology, 42, 145, ; Vaugham D. (1991), Plant Root Growth. An Ecological Perspective, 399. ; Vick B. (1987), Metabolism, Function and Structure of Plant Lipids, 383, ; Wang X. (1987), Effect of a substituted pyridazinone on the decrease of lipoxygenase activity in soybean cotyledons, Plant Science, 51, 29, ; Zeng R. (2001), Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants, Agronomy Journal, 93, 72,